scispace - formally typeset
Search or ask a question
Institution

Amirkabir University of Technology

EducationTehran, Iran
About: Amirkabir University of Technology is a education organization based out in Tehran, Iran. It is known for research contribution in the topics: Nonlinear system & Finite element method. The organization has 15254 authors who have published 31165 publications receiving 487551 citations. The organization is also known as: Tehran Polytechnic & Tehran Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the impact response of fiber metal laminates was investigated with experiments and numerical simulations, which is reported in this article. And a major part of this study was to accomplish a dynamic non-linear transient analysis to study the impactresponse of FMLs using the commercial finite element (FE) analysis code ABAQUS.
Abstract: The impact response of fiber metal laminates (FMLs), has been investigated with experiments and numerical simulations, which is reported in this article. Low-velocity impacts were carried out to study the effects of metal type and thickness within FMLs. Glare5-3/2 laminates with two aluminum layer thicknesses and a similar FML containing magnesium sheets were impacted by drop weight tests. Also, a major part of this study was to accomplish a dynamic non-linear transient analysis to study the impact response of FMLs using the commercial finite element (FE) analysis code ABAQUS. By reviewing different approaches of modeling constituents of an FML, it is shown that the appropriate selection of elements hasmore significant role than failure criterion to predict acceptable results for this type of laminate and loading. The good agreement obtained between experimental and numerical results verifies the possibility of relatively simpler simulation by FE-analysis to predict overall response of FMLs under impact loading.

132 citations

Journal ArticleDOI
TL;DR: In this article, a numerical finite element model is presented to simulate the removal of dissolved textile synthetic dyes from wastewater taking into consideration both linear and the Langmuir isotherms to describe adsorption process.

132 citations

Journal ArticleDOI
TL;DR: Insight is given into development of a hybrid PSO–BP predictive model of uniaxial compressive strength (UCS) of rocks using back-propagation (BP) artificial neural network (ANN) and results showed that PSO-BP model performs well in predicting UCS.
Abstract: Application of back-propagation (BP) artificial neural network (ANN) as an accurate, practical and quick tool in indirect estimation of uniaxial compressive strength (UCS) of rocks has recently been highlighted in the literature. This is mainly due to difficulty in direct determination of UCS in laboratory as preparing the core samples for this test is troublesome and time-consuming. However, ANN technique has some limitations such as getting trapped in local minima. These limitations can be minimized by combining the ANNs with robust optimization algorithms like particle swarm optimization (PSO). This paper gives insight into development of a hybrid PSO–BP predictive model of UCS. For this reason, dataset comprising the results of 228 laboratory tests including dry density, moisture content, P wave velocity, point load index test, slake durability index and UCS was prepared. These tests were conducted on 38 sandstone samples which were taken from two excavation sites in Malaysia. Findings showed that PSO–BP model performs well in predicting UCS. Nevertheless, to compare the prediction performance of the PSO–BP model, the UCS is predicted using ANN-based PSO and BP models. The correlation coefficient, R, values equal to 0.988 and 0.999 for training and testing datasets, respectively, suggest that the PSO–BP model outperforms the other predictive models.

132 citations

Journal ArticleDOI
TL;DR: In this paper, the deformation characteristics of the 2205 duplex stainless steel were analyzed using constitutive equations and processing maps, and it was realized that dynamic restoration mechanisms could efficiently hinder the occurrence of flow instability at low and medium strain rates.
Abstract: The hot deformation characteristics of the 2205 duplex stainless steel were analyzed using constitutive equations and processing maps. The hot compression tests were performed at temperature range of 950–1200 °C and strain rate of 0.001–1 s−1. Flow stress was modeled by the constitutive equation of hyperbolic sine function. However, the stress exponent and strain rate sensitivity were different at low and high deformation temperatures where austenite and ferrite are dominant, respectively. It was recognized that strain at the peak point of flow curve increases with the Zener–Hollomon parameter, Z, at low temperature deformation while at high temperature deformation it actually decreases with Z. The power dissipation map, instability map and processing map were developed for the typical strain of 0.3. It was realized that dynamic restoration mechanisms could efficiently hinder the occurrence of flow instability at low and medium strain rates. Otherwise, the increase in strain rate at low and high temperatures could increase the risk of flow instability.

131 citations

Journal ArticleDOI
TL;DR: To deal with the uncertainty and vagueness from humans' subjective perception and experience in decision process, this paper presents an evaluation model based on deterministic data, fuzzy numbers, interval numbers and linguistic terms.
Abstract: In multiple attribute decision making (MADM) problem, a decision maker (DM) has to choose the best alternative that satisfies the evaluation criteria among a set of candidate solutions. It is generally hard to find an alternative that meets all the criteria simultaneously, so a good compromise solution is preferred. The VIKOR method was developed for multi-criteria optimization of complex systems. This method focuses on ranking and selecting from a set of alternatives in the presence of conflicting criteria. It introduces the multi-criteria ranking index based on the particular measure of ''closeness'' to the ''ideal'' solution. To deal with the uncertainty and vagueness from humans' subjective perception and experience in decision process, this paper presents an evaluation model based on deterministic data, fuzzy numbers, interval numbers and linguistic terms. Combination of analytic hierarchy process (AHP) and entropy method was applied for attribute weighting in this proposed MADM method. To demonstrate the potential of the methodology, the proposed method is used for surface mine equipment selection problems.

131 citations


Authors

Showing all 15352 results

NameH-indexPapersCitations
Ali Mohammadi106114954596
Mehdi Dehghan8387529225
Morteza Mahmoudi8333426229
Gaurav Sharma82124431482
Vladimir A. Rakov6745914918
Mohammad Reza Ganjali65103925238
Bahram Ramezanzadeh6235212946
Muhammad Sahimi6248117334
Niyaz Mohammad Mahmoodi6121810080
Amir A. Zadpoor6129411653
Mohammad Hossein Ahmadi6047711659
Goodarz Ahmadi6077817735
Maryam Kavousi5925822009
Keith W. Hipel5854314045
Danial Jahed Armaghani552128400
Network Information
Related Institutions (5)
Sharif University of Technology
31.3K papers, 526.8K citations

97% related

University of Tehran
65.3K papers, 958.5K citations

93% related

Tarbiat Modares University
32.6K papers, 526.3K citations

92% related

Islamic Azad University
113.4K papers, 1.2M citations

92% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202346
2022216
20212,493
20202,359
20192,368
20182,266