scispace - formally typeset
Search or ask a question

Showing papers in "Proceedings of SPIE in 2005"


Proceedings ArticleDOI
TL;DR: A new class of multidimensional representation systems, called shearlets, obtained by applying the actions of dilation, shear transformation and translation to a fixed function, and exhibit the geometric and mathematical properties, e.g., directionality, elongated shapes, scales, oscillations are described.
Abstract: In this paper we describe a new class of multidimensional representation systems, called shearlets. They are obtained by applying the actions of dilation, shear transformation and translation to a fixed function, and exhibit the geometric and mathematical properties, e.g., directionality, elongated shapes, scales, oscillations, recently advocated by many authors for sparse image processing applications. These systems can be studied within the framework of a generalized multiresolution analysis. This approach leads to a recursive algorithm for the implementation of these systems, that generalizes the classical cascade algorithm.

530 citations


Proceedings ArticleDOI
TL;DR: The Atmospheric Correction Parameter Calculator as mentioned in this paper uses the National Centers for Environmental Prediction (NCEP) modeled atmospheric global profiles interpolated to a particular date, time and location as input.
Abstract: An atmospheric correction tool has been developed on a public access web site for the thermal band of the Landsat-5 and Landsat-7 sensors. The Atmospheric Correction Parameter Calculator uses the National Centers for Environmental Prediction (NCEP) modeled atmospheric global profiles interpolated to a particular date, time and location as input. Using MODTRAN radiative transfer code and a suite of integration algorithms, the site-specific atmospheric transmission, and upwelling and downwelling radiances are derived. These calculated parameters can be applied to single band thermal imagery from Landsat-5 Thematic Mapper (TM) or Landsat-7 Enhanced Thematic Mapper Plus (ETM+) to infer an at-surface kinetic temperature for every pixel in the scene. The derivation of the correction parameters is similar to the methods used by the independent Landsat calibration validation teams at NASA/Jet Propulsion Laboratory and at Rochester Institute of Technology. This paper presents a validation of the Atmospheric Correction Parameter Calculator by comparing the top-of-atmosphere temperatures predicted by the two teams to those predicted by the Calculator. Initial comparisons between the predicted temperatures showed a systematic error of greater then 1.5K in the Calculator results. Modifications to the software have reduced the bias to less then 0.5 ± 0.8K. Though not expected to perform quite as well globally, the tool provides a single integrated method of calculating atmospheric transmission and upwelling and downwelling radiances that have historically been difficult to derive. Even with the uncertainties in the NCEP model, it is expected that the Calculator should predict atmospheric parameters that allow apparent surface temperatures to be derived within ±2K globally, where the surface emissivity is known and the atmosphere is relatively clear. The Calculator is available at http://atmcorr.gsfc.nasa.gov.

316 citations


Proceedings ArticleDOI
TL;DR: In this paper, the measurements are modelled as a Poisson process with a spatially dependent rate parameter, which allows to model extended targets as an intensity distribution rather than a set of points and, for a target formation, it gives the option of modelling part of the group as a spatial distribution of target density.
Abstract: It is common practice to represent a target group (or an extended target) as set of point sources and attempt to formulate a tracking filter by constructing possible assignments between measurements and the sources. We suggest an alternative approach that produces a measurement model (likelihood) in terms of the spatial density of measurements over the sensor observation region. In particular, the measurements are modelled as a Poisson process with a spatially dependent rate parameter. This representation allows us to model extended targets as an intensity distribution rather than a set of points and, for a target formation, it gives the option of modelling part of the group as a spatial distribution of target density. Furthermore, as a direct consequence of the Poisson model, the measurement likelihood may be evaluated without constructing explicit association hypotheses. This considerably simplifies the filter and gives a substantial computational saving in a particle filter implementation. The Poisson target-measurement model will be described and its relationship to other filters will be discussed. Illustrative simulation examples will be presented.

292 citations


Proceedings ArticleDOI
TL;DR: In this paper, the authors quantified chromaticity shifts in mixed-color and phosphor-converted white LED systems due to continuous current reduction and pulse-width-modulation (PWM) schemes.
Abstract: The goal of this study was to characterize the chromaticity shift that mixed-color and phosphor-converted white LED systems undergo when dimmed. As light-emitting diodes continue to rapidly evolve as a viable light source for lighting applications, their color shift while being dimmed should meet the current requirements of traditional lighting sources. Currently, LED system manufacturers commonly recommend pulse-width-modulation or PWM dimming schemes for operation of LED systems. PWM has the ability to achieve lower intensity levels and more linear control of light intensity compared to continuous current dimming methods. However, little data has been published on the effect dimming has on chromaticity shift of white LED lighting systems. The primary objective of this study was to quantify chromaticity shifts in mixed-color and phosphor-converted white LED systems due to continuous current dimming and pulse-width-modulation dimming schemes. In this study, the light output of the LED system was reduced from 100% to 3% by means of continuous current reduction or PWM methods using a PC white LED system and a mixed-color RGB LED system. Experimental results from this study showed that the PC white LED system exhibited very little chromaticity shift (less than a 4-step MacAdam ellipse) when the light level was changed from 100% to 3% using both dimming schemes. Compared to PC white LEDs, the mixed-color RGB LED system tested in this study showed very large chromaticity shifts in a similar dimming range using both dimming schemes. If a mixed-color RGB system is required, then some active feedback system control must be incorporated to obtain non-perceivable chromaticity shift. In this regard the chromaticity shift caused by the PWM method is easier to correct than the chromaticity shift caused by the continuous current dimming method.

205 citations


Proceedings ArticleDOI
TL;DR: In this article, the sensitivity of long-period fiber gratings as a function of processed parameters by high-frequency CO 2 laser pulses has been investigated and a theoretical and experimental investigation has been conducted.
Abstract: Full characterization of the sensitivity of the LPFG is a precursor to practical device design, and knowledge of the sensitivity of the Long-period fiber gratings to the parameters of its physical environment processed is clearly important. We present a theoretical and experimental investigation into the sensitivity of long-period fiber gratings as a function of processed parameters by high-frequency CO 2 laser pulses.

199 citations


Proceedings ArticleDOI
TL;DR: A significantly improved algorithm for the problem of finding a Fourier representation R of m terms for a given discrete signal A of length N and a quadratic-in-m algorithm that works for any values of Ni's is given.
Abstract: •We study the problem of finding a Fourier representation R of m terms for a given discrete signal A of length N. The Fast Fourier Transform (FFT) can find the optimal N-term representation in time O(N log N) time, but our goal is to get sublinear time algorithms when m << N. Suppose ||A||2 ≤M||A-Ropt||2, where Ropt is the optimal output. The previously best known algorithms output R such that ||A-R||22≤(1+e))||A-Ropt||22 with probability at least 1-δ in time* poly(m,log(1/δ),log N,log M,1/e). Although this is sublinear in the input size, the dominating expression is the polynomial factor in m which, for published algorithms, is greater than or equal to the bottleneck at m2 that we identify below. Our experience with these algorithms shows that this is serious limitation in theory and in practice. Our algorithm beats this m2 bottleneck. Our main result is a significantly improved algorithm for this problem and the d-dimensional analog. Our algorithm outputs an R with the same approximation guarantees but it runs in time m•poly(log(1/δ),log N,log M,1/e). A version of the algorithm holds for all N, though the details differ slightly according to the factorization of N. For the d-dimensional problem of size N1 × N2 × •• × Nd, the linear-in-m algorithm extends efficiently to higher dimensions for certain factorizations of the Ni's; we give a quadratic-in-m algorithm that works for any values of Ni's. This article replaces several earlier, unpublished drafts.

187 citations


Proceedings ArticleDOI
TL;DR: A simple and yet efficient variation of the K-SVD that handles such extraction of non-negative dictionaries is presented, and its generalization to nonnegative matrix factorization problem that suits signals generated under an additive model with positive atoms is described.
Abstract: In recent years there is a growing interest in the study of sparse representation for signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described as sparse linear combinations of these atoms. Recent activity in this field concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting pre-specified transforms, or by adapting the dictionary to a set of training signals. Both these techniques have been considered in recent years, however this topic is largely still open. In this paper we address the latter problem of designing dictionaries, and introduce the K-SVD algorithm for this task. We show how this algorithm could be interpreted as a generalization of the K-Means clustering process, and demonstrate its behavior in both synthetic tests and in applications on real data. Finally, we turn to describe its generalization to nonnegative matrix factorization problem that suits signals generated under an additive model with positive atoms. We present a simple and yet efficient variation of the K-SVD that handles such extraction of non-negative dictionaries.

186 citations


Proceedings ArticleDOI
TL;DR: This paper presents several methods to design an energy harvesting device depending on the type of energy avaliable, which could be used to recharge a battery, or even to directly power the electronic device.
Abstract: The trends in technology allow the decrease in both size and power consumption of complex digital systems. This decrease in size and power gives rise to new paradigms of computing and use of electronics, with many small devices working collaboratively or at least with strong communication capabilities. Examples of these new paradigms are wearable devices and wireless sensor networks. Currently, these devices are powered by batteries. However, batteries present several disadvantages: the need to either replace or recharge them periodically and their big size and weight compared to high technology electronics. One possibility to overcome these power limitations is to extract (harvest) energy from the environment to either recharge a battery, or even to directly power the electronic device. This paper presents several methods to design an energy harvesting device depending on the type of energy avaliable.

169 citations


Proceedings ArticleDOI
TL;DR: This paper presents the first 3D discrete curvelet transform, an extension to the 2D transform described in Candes et al..1, and describes three different implementations: in-core, out-of-core and MPI-based parallel implementations.
Abstract: In this paper, we present the first 3D discrete curvelet transform. This transform is an extension to the 2D transform described in Candes et al..1 The resulting curvelet frame preserves the important properties, such as parabolic scaling, tightness and sparse representation for singularities of codimension one. We describe three different implementations: in-core, out-of-core and MPI-based parallel implementations. Numerical results verify the desired properties of the 3D curvelets and demonstrate the efficiency of our implementations.

157 citations


Proceedings ArticleDOI
TL;DR: In this paper, a Ce:YAG (Y3Al5O12) glass-ceramic phosphor was developed for white LED, which was obtained by a heat treatment of a Ce-doped SiO2-Al2O3-Y2O12 mother glass between 1200°C and 1500°C for a prescribed time of period.
Abstract: We have developed a Ce:YAG (Y3Al5O12) glass-ceramic phosphor for the white LED. The glass-ceramic phosphor was obtained by a heat treatment of a Ce-doped SiO2-Al2O3-Y2O3 mother glass between 1200°C and 1500°C for the prescribed time of period. We confirmed that, by XRD measurements, only YAG crystal precipitated in the mother glass after the heat treatment. It was shown from SEM observation that the YAG crystals with a grain size of approximately 20μm were uniformly dispersed in the glass matrix. The yellow emission, around 540nm in wavelength, was observed from the glass-ceramic phosphor, when it was excited by a blue LED (465nm). The white light due to the mix of yellow and blue light was observed from the glass-ceramic plate with a thickness of 0.5mm. The YAG glass-ceramic phosphor showed a high-temperature resistance and a good performance in a damp heat test. Moreover, a higher thermal conductivity of 2.18 Wm-1K-1 and bending strength of 125MPa were observed compared with a conventional soda-lime glass or an epoxy resin. In addition, since the YAG glass-ceramic phosphor can be formed in a plate-like shape, there is no need to be sealed in resins for the fabrication of the LED devices. Therefore, it is expected that this newly developed glass-ceramic phosphor is a promising candidate for the realization of resin-free, high-temperature and high-humidity resistant, long-life white LED devices.

132 citations


Proceedings ArticleDOI
TL;DR: The James Webb Space Telescope (JWST) as mentioned in this paper is the scientific successor to both the Hubble Space Telescope and the Spitzer Space Telescope, and it is envisioned as a facility-class mission.
Abstract: The James Webb Space Telescope (JWST) is the scientific successor to both the Hubble Space Telescope and the Spitzer Space Telescope. It is envisioned as a facility-class mission. The instrument suite provides broad wavelength coverage and capabilities aimed at four key science themes: 1)The End of the Dark Ages: First Light and Reionization; 2) The Assembly of Galaxies; 3) The Birth of Stars and Protoplanetary Systems; and 4) Planetary Systems and the Origins of Life. NIRCam is the 0.6 to 5 micron imager for JWST, and it is also the facility wavefront sensor used to keep the primary mirror in alignment.

Proceedings ArticleDOI
TL;DR: MCA is extended to a multichannel MCA (MMCA) for analyzing multispectral data and a range of examples which illustrates the results are presented.
Abstract: The Morphological Component Analysis (MCA) is a a new method which allows us to separate features contained in an image when these features present different morphological aspects. We show that MCA can be very useful for decomposing images into texture and piecewise smooth (cartoon) parts or for inpainting applications. We extend MCA to a multichannel MCA (MMCA) for analyzing multispectral data and present a range of examples which illustrates the results.

Proceedings ArticleDOI
TL;DR: Recommendations to modify the Color Rendering Index that would overcome flaws in the CRI are developed, including a new computation scheme for determining the color rendering score that differentiates between hue and saturation shifts and takes their directions into account.
Abstract: Several aspects of the Color Rendering Index (CRI) are flawed, limiting its usefulness in assessing the color rendering capabilities of LEDs for general illumination. At NIST, we are developing recommendations to modify the CRI that would overcome these problems. The current CRI is based on only eight reflective samples, all of which are low to medium chromatic saturation. These colors do not adequately span the range of normal object colors. Some lights that are able to accurately render colors of low saturation perform poorly with highly saturated colors. This is particularly prominent with light sources with peaked spectral distributions as realized by solid-state lighting. We have assembled 15 Munsell samples that overcome these problems and have performed analysis to show the improvement. Additionally, the CRI penalizes lamps for showing increases in object chromatic saturation compared to reference lights, which is actually desirable for most applications. We suggest a new computation scheme for determining the color rendering score that differentiates between hue and saturation shifts and takes their directions into account. The uniform color space used in the CRI is outdated and a replacement will be recommended. The CRI matches the CCT of the reference to that of the test light. This can be problematic when lights are substantially bluish or reddish. Lights of extreme CCTs are frequently poor color renderers, though they can score very high on the current CRI. An improved chromatic adaptation correction calculation would eliminate the need to match CCT and an updated correction is being considered.

Proceedings ArticleDOI
TL;DR: In this article, volume Bragg gratings recorded in photo-thermo-refractive (PTR) glass were used as transmitting and reflecting elements of external resonators for high-power semiconductor laser diodes.
Abstract: Results of a long-term research in spectral narrowing and transverse mode selection in semiconductor lasers by means of volume Bragg gratings recorded in a photo-thermo-refractive (PTR) glass are described. PTR glass is a multicomponent silicate optical glass which changes its refractive index after UV exposure followed by thermal development. This feature enables recording of volume holograms with efficiency exceeding 97% in visible and near IR spectral regions which tolerate high temperatures up to 400°C, high power laser radiation. Transmitting and reflecting volume Bragg gratings recorded in such manner have spectral and angular selectivity down to 0.01 nm and 0.1 mrad, respectively. These spectral and angular selectors were used as transmitting and reflecting elements of external resonators for high-power semiconductor laser diodes (LDs). Transmitting Bragg gratings provide tunability of LDs in the range up to 60 nm, spectral narrowing down to 200 pm, stabilization of wavelength within 500 pm. Reflecting Bragg gratings allow spectral narrowing down to 20 pm, stabilization of wavelength below 100 pm at temperature variations up to 75 K. A single transverse mode emission for wide stripe LDs is observed at pumping currents exceeding 10 thresholds. Narrowing and stabilization of emission spectra of LD bars is demonstrated. It is important that all these features are achieved by passive elements with efficiency exceeding 97% and unlimited lifetime while actual brightness increase exceeded two orders of magnitude.

Proceedings ArticleDOI
TL;DR: In this article, a number of special observations were performed to measure the spectral parameters and the absolute flux of the Crab with XMM-Newton's EPIC-pn CCD camera.
Abstract: Various X-ray satellites have used the Crab as a standard candle to perform their calibrations in the past. The calibration of XMM-Newton, however, is independent of the Crab nebula, because this object has not been used to adjust spectral calibration issues. In 2004 a number of special observations were performed to measure the spectral parameters and the absolute flux of the Crab with XMM-Newton's EPIC-pn CCD camera. We describe the results of the campaign in detail and compare them with data of four current missions (Integral, Swift, Chandra, RXTE) and numerous previous missions (ROSAT, EXOSAT, Beppo-SAX, ASCA, Ginga, Einstein, Mir-HEXE).

Proceedings ArticleDOI
TL;DR: The Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Center is responsible for the processing and validation of oceanic optical property retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS).
Abstract: The Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Center is responsible for the processing and validation of oceanic optical property retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). A major goal of this activity is the production of a continuous ocean color time-series spanning the mission life of these sensors from September 1997 to the present time. This paper presents an overview of the calibration and validation strategy employed to optimize and verify sensor performance for retrieval of upwelling radiances just above the sea surface. Substantial focus is given to the comparison of results over the common mission lifespan of SeaWiFS and the MODIS flying on the Aqua platform, covering the period from July 2002 through December 2004. It will be shown that, through consistent application of calibration and processing methodologies, a continuous ocean color time-series can be produced from two different spaceborne sensors.

Proceedings ArticleDOI
TL;DR: In this paper, the effect of Gd2O3 substitution on the optical properties of the glass-ceramic (GC) phosphor for the white LED was investigated, and the color coordinates (x,y) of the composite were increased with increasing thickness of the GC mounted on a blue LED chip.
Abstract: Optical properties of the Ce:YAG glass-ceramic (GC) phosphor for the white LED were investigated. Concentration dependence of fluorescence intensity of Ce3+:5d→4f transition in the GC showed a maximum at 0.5mol%Ce2O3. Quantum efficiency (QE) of Ce3+ fluorescence in the GC materials, the color coordinate and luminous flux of electroluminescence of LED composite were evaluated with an integrating sphere. QE increased with increasing ceramming temperature of the as-made glass. The color coordinates (x,y) of the composite were increased with increasing thickness of the GC mounted on a blue LED chip. The effect of Gd2O3 substitution on the optical properties of the GC materials was also investigated. The excitation and emission wavelength shifted to longer side up to Gd/(Y+Gd)=0.40 in molar composition. As a result, the color coordinate locus of the LED with various thickness of the GdYAG-GC shifted to closer to the Planckian locus for the blackbody radiation. These results were explained by partial substitution of Gd3+ ions in the precipitated YAG micro-crystals, leading to the increase of lattice constant of unit cell, which was confirmed by X-ray diffraction.

Proceedings ArticleDOI
TL;DR: In this paper, a divided aperture MWIR imaging polarimeter is proposed to acquire multiple polarization images simultaneously from a single focal plane array from an image relay lens set, each of which measures a different orientation of linear polarization.
Abstract: Imaging polarimetry has the potential to be a key sensor technology in a number of target detection applications. Imaging polarimeters measure the polarization state of light emitted from and/or reflected from scenes. The light is polarized because of the geometry, roughness and material properties of the objects embedded in the scene. This added information enhances conventional intensity and color imagery, potentially surpassing its performance in low contrast situations. In this paper, we describe a divided aperture MWIR imaging polarimeter which acquires multiple polarization images simultaneously. At the heart of the polarimeter is a relay lens set that produces four identical images on a single focal plane array from a single aperture. Each of the four images measures a different orientation of linear polarization, 0, 45, 90 and 135 degrees. The relay lens set operates inside of a pour fill Dewar of a InSb MWIR camera. The design and calibration method for the polarimeter are given along with example data sets taken from the air over Huntsville, AL.

Proceedings ArticleDOI
TL;DR: In this article, a tree-structured sparse representation is proposed as additional prior information for linear inverse problems with limited numbers of measurements, which leads to better reconstruction while requiring less time compared to methods that only assume sparse representations.
Abstract: Recent studies in linear inverse problems have recognized the sparse representation of unknown signal in a certain basis as an useful and effective prior information to solve those problems. In many multiscale bases (e.g. wavelets), signals of interest (e.g. piecewise-smooth signals) not only have few significant coefficients, but also those significant coefficients are well-organized in trees. We propose to exploit the tree-structured sparse representation as additional prior information for linear inverse problems with limited numbers of measurements. We present numerical results showing that exploiting the sparse tree representations lead to better reconstruction while requiring less time compared to methods that only assume sparse representations.

Proceedings ArticleDOI
TL;DR: In this paper, the authors discuss the development of LEDs for large area general illumination and the technologies that will need to occur for LEDs to be viable for large-scale general illumination.
Abstract: LEDs have been commercially available since the 1960's, but in recent years there have been remarkable improvements in performance. These technology developments have enabled the use of LEDs in a variety of colored and white lighting applications. Colored LEDs have already become the technology of choice for traffic signals, much of interior and exterior vehicle lighting, signage of various types often as a replacement for neon, and other areas. LEDs are expected to become the dominant technology for most colored lighting applications. LEDs are beginning to penetrate white lighting markets such as flashlights and localized task lighting. With further improvement LEDs have the potential to become an important technology for large area general illumination. White LED products already have performance of over 30 lumens/watt which is nearly 3x better than incandescents. White LEDs with outputs of more than 100 lumens are already available commercially, and higher power devices can be expected in the near future. LEDs can be used as point sources, or can be used with light guides of various types to provide distributed illumination. Developments that will need to occur for LEDs to be viable for large area general illumination are discussed.


Proceedings ArticleDOI
TL;DR: Power Spectral Density (PSD) can be used to quantify mid-spatial frequency errors, such as waviness, ripple, and quilting as mentioned in this paper, in terms of quantifying surface characteristics.
Abstract: Specifications for optical surfaces have traditionally been given in terms of low frequency and high frequency components, often with a separate classification for surface slope. Low spatial frequency components are commonly referred to as figure errors and can be described by the standard 37-term Zernike polynomial set. High spatial frequency errors are commonly referred to as finish and are quantified using rms roughness. Specification with the qualitative scratch and dig classification is done usually for cosmetic or aesthetic purposes. Mid-spatial frequency errors such as waviness, ripple, and quilting can be important and are not explicitly covered by such traditional figure and finish specifications. In order to bridge the gap to cover mid-spatial frequencies, in terms of quantifying surface characteristics, Power Spectral Density (PSD) can be utilized. For such usage, it is important for the greater optics community to understand the metric, how to calculate it, and how to use it. The purpose of this paper is to provide an overview of PSD, its application in optics, and an outline of calculations needed to effectively apply it to specify optical surfaces.

Proceedings ArticleDOI
TL;DR: In this paper, the authors present their results about fog attenuation at the 950 and 850 nm wavelengths in heavy maritime fog with peak values up to 500 dB/km, and compare their measurement data with the commonly used light attenuation models of Kruse and Kim, and present some interesting insights.
Abstract: Free Space Optics (FSO) has gained considerable importance in this decade of demand for high bandwidth transmission capabilities. FSO can provide the last mile solution, but the availability and reliability issues concerned with it have acquired more attention, and a need for thorough investigations. In this work, we present our results about fog attenuation at the 950 and 850 nm wavelengths in heavy maritime fog with peak values up to 500 dB/km. For the attenuation measurement, optical wavelengths are transmitted over the same path of fog in free air to a receiver, measuring the power of every wavelength. The RF marker technology employed takes advantage of modulating every optical wavelength with an individual carrier frequency, allowing to use one optical front end for the receiver and to separate individual wavelengths by electrical signal filters. The measurement of fog attenuation at different wavelengths was performed at the France Telecom R & D test facility at La Turbie. Maritime or advection fog, which caused the light attenuation consists of water droplets of larger diameter in the order of 20 μm and can cause visibilities as low as 30 meters. The visibility was measured using a transmissiometer at 550 nm. We compare our measurement data with the commonly used light attenuation models of Kruse and Kim, and present some interesting insights. The practical measurements described try to validate the models and therefore should lead to a more accurate availability prediction for FSO links.

Proceedings ArticleDOI
TL;DR: In this paper, the authors present a review of generic vibration criteria used for vibration-sensitive technical facilities, and compare the criteria with representative types of research equipmen t and activities, and discuss the background of a generic criterion in common us age for nanotechnology, currently denoted NIST-A.
Abstract: The paper presents a review of generic vibration criteria used for vibration-sensitive technical facilities. The paper reviews the logic behind and evolution of the Vibration Crit erion (VC) curves, originally known as the “BBN” criteria, and discusses the background of a generic criterion in common us age for nanotechnology, currently denoted NIST-A. The criteria are compared with representative types of research equipmen t and activities.

Proceedings ArticleDOI
TL;DR: In this paper, several ZnO nanostructures (nanorods, nanoneedles, nanoshells and tetrapod nanorods) were synthesized by thermal evaporation and chemical methods.
Abstract: Zinc oxide (ZnO) is of great interest in photonic applications due to its wide bandgap (3.37 eV) and high exciton binding energy (60 meV). In the photoluminescence (PL) spectrum of ZnO, typically one UV band-edge emission peak and one or more peaks at the visible spectral range due to defect emission are observed. The PL emission of ZnO is commonly green, but other colors like yellow and orange are also reported. Out of the different visible peaks, the origin of the green one is the most controversial. The most commonly cited explanation for it is the transition between a singly oxidized oxygen vacancy and a photoexcited hole [K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).]. However, this hypothesis is established on ZnO phosphors but not on nanostructured samples. In this work, several ZnO nanostructures (nanorods, nanoneedles, nanoshells and tetrapod nanorods) were synthesized by thermal evaporation and chemical methods. The obtained nanostructures were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL), and electron paramagnetic resonance spectroscopy (EPR). It was found that fabrication methods significantly affect the defect emissions of the nanostructures. For different fabrication conditions, defect emissions in the green, yellow, and orange spectral ranges were observed. No correlation was found between the deep levels responsible for the visible emission and the EPR signal. Origins of the different defect emissions are discussed.

Proceedings ArticleDOI
TL;DR: Methods to improve numerically the reconstructed images by twin-image reduction are described, which are of great importance in in-line holography where spatial elimination of the twin- image cannot be carried out as in off-axis holographY.
Abstract: In-line digital holography conciles the applicative interest of a simple optical set-up with the speed, low cost and potential of digital reconstruction. We address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin-image cannot be carried out as in off-axis holography. Applications in digital holography of particle fields greatly depend on its suppression to reach greater particle concentrations, keeping a sufficient signal to noise ratio in reconstructed images. We describe in this paper methods to improve numerically the reconstructed images by twin-image reduction.

Proceedings ArticleDOI
TL;DR: In this article, the authors developed a new packaging method for white LEDs called scattered photon extraction (SPE), which enables higher luminous efficacy by placing the phosphor at a remote location from the die and by shaping the lens surrounding the die to extract a significant portion of the back-transferred light before it is absorbed by packaging components.
Abstract: This paper describes work leading to the development of a new packaging method for white LEDs, called scattered photon extraction (SPE). Previous work by our group showed that the traditional placement of the phosphor close to the die negatively affects the overall luminous efficacy and lumen maintenance of phosphor-converted white LEDs. The new SPE method enables higher luminous efficacy by placing the phosphor at a remote location from the die and by shaping the lens surrounding the die to extract a significant portion of the back-transferred light before it is absorbed by packaging components. Although the remote phosphor concept is not new, SPE is the first method to demonstrate efficient extraction of back-transferred light and show over 60 percent improvement in light output and efficacy compared to similar commercial white LEDs. At low currents, the prototype white LEDs based on the SPE technique showed over 80 lumens per watt. The SPE concept was tried on two types of commercial packages and both showed similar improvements.

Proceedings ArticleDOI
TL;DR: Algorithmic steps are added which automatically extract the polarization parameters needed, and make visibility recovery more robust to polarization effects originating from specular objects, and an electrically-switchable polarizer based on a liquid crystal device is tested for improving acquisition speed.
Abstract: Recent studies have shown that major visibility degradation effects caused by haze can be corrected for by analyzing polarization-filtered images. The analysis is based on the fact that the path-radiance in the atmosphere (airlight) is often partially polarized. Thus, associating polarization with path-radiance enables its removal, as well as compensation for atmospheric attenuation. However, prior implementations of this method suffered from several problems. First, they were based on mechanical polarizers, which are slow and rely on moving part. Second, the method had failed in image areas corresponding to specular objects, such as water bodies (lakes) and shiny construction materials (e.g., windows). The reason for this stems from the fact that specular objects reflect partially polarized light, confusing a naive association of polarization solely with path-radiance. Finally, prior implementations derived necessary polarization parameters by manually selecting reference points in the field of view. This human intervention is a drawback, since we would rather automate the process. In this paper, we report our most recent progress in the development of our visibility-improvement method. We show directions by which those problems can be overcome. Specifically, we added algorithmic steps which automatically extract the polarization parameters needed, and make visibility recovery more robust to polarization effects originating from specular objects. In addition, we now test an electrically-switchable polarizer based on a liquid crystal device for improving acquisition speed.

Proceedings ArticleDOI
TL;DR: In this paper, double-sided arrays are manufactured by polymer-on-glass replication of reflow lenses for high-brightness RGB-illumination systems for rectangular areas.
Abstract: Efficient homogeneous illumination of rectangular or circular areas with LEDs is a promising application for doublesided microlens arrays. Such illumination schemes employ a primary optics - which can be realized with a concentrator or a collimation lens - and a secondary optics with one or more double-sided microlens arrays and a collection optics for superposing the light from the individual array channels. The main advantage of this design is the achievable short system length compared to integrating lightpipe designs with subsequent relay optics. We describe design rules for the secondary optics derived from simple ABCD-matrix formalism. Based on these rules, sequential raytracing is used for the actual optics system design. Double-sided arrays are manufactured by polymer-on-glass replication of reflow lenses. With cylindrical lens arrays we assembled high-brightness RGB-illumination systems for rectangular areas. Hexagonal packed double-sided arrays of spherical lenslets were applied for a miniaturized circular spotlight. Black matrix polymer apertures attached to the lens array helped to avoid unwanted straylight.

Proceedings ArticleDOI
TL;DR: The authors have developed two related techniques for the direct three-dimensional measurement of specular reflecting surfaces based on the observation of the mirror image of a grid-like reference structure and apply principles that are well-known from measurement systems for non-reflecting surfaces, such as photogrammetry and structured illumination, to the evaluation ofspecular surfaces.
Abstract: While for non-reflecting surfaces a variety of optical techniques is available that allow the flexible geometric measurement of free-form surfaces, established approaches for the testing of specular surfaces are limited to basic geometries or slight deviations from an assumed reference geometry As not only the intensified use of aspheric optics but also the increasing quality standards for technical surfaces call for an enhanced measurement range, the authors have developed two related techniques for the direct three-dimensional measurement of specular reflecting surfaces These techniques are based on the observation of the mirror image of a grid-like reference structure and apply principles that are well-known from measurement systems for non-reflecting surfaces, such as photogrammetry and structured illumination, to the evaluation of specular surfaces While the first of these approaches works with an active triangulation process based on one camera and a pseudo three-dimensional reference structure, the second one utilises a stereo-photogrammetric camera system in conjunction with a merely two-dimensional reference structure Both systems allow the unambiguous measurement of reflecting free-form surfaces and may, by the use of multiple wavelength and photogrammetric stitching techniques, be extended to the measurement of rather complex geometries Besides the fundamental mode of operation of this so-called reflection grating photogrammetry, the properties of a suitable reference structure will be presented in this contribution Furthermore the photogrammetric calibration procedure and the used calibration models will be discussed Finally the measurement uncertainty is evaluated based on both, experimental and theoretical considerations