scispace - formally typeset
Search or ask a question
Institution

Defence Science and Technology Laboratory

GovernmentSalisbury, United Kingdom
About: Defence Science and Technology Laboratory is a government organization based out in Salisbury, United Kingdom. It is known for research contribution in the topics: Burkholderia pseudomallei & Francisella tularensis. The organization has 926 authors who have published 1242 publications receiving 30091 citations. The organization is also known as: Dstl & [dstl].


Papers
More filters
Proceedings Article
23 Mar 2009
TL;DR: In this paper, the authors present the development and assessment of wearable antennas which are integrated into clothing, considering antennas operating from 100MHz to 1GHz and measured radiation patterns and input impedances.
Abstract: There is an increasing interest in wearable antennas and electronics in both the civil and military domains. In the civil domain there is a move towards pervasive computing which utilises various electronic devices placed around the body. Electronic devices typically involve a communications element for transfer of entertainment media, information sources and social interaction. Communication may occur between devices through an on-body channel or to external devices. Flexible, conformal antennas are essential to provide an unobtrusive solution. In the military domain the current emphasis on network centric warfare and more complex body worn sensors contrasts with a desire to reduce the burden on the soldier. Flexible, conformal, wearable electronics and antennas provide technology to satisfy these conflicting requirements. This paper presents the development and assessment of wearable antennas which are integrated into clothing. This work considers antennas operating from 100MHz to 1GHz. Advantages and disadvantages of several construction methods and materials are discussed. Measured radiation patterns and input impedances are presented for the integrated antennas worn on the body.

87 citations

Journal ArticleDOI
TL;DR: The first step in mapping out the spatial location of structural proteins within the exosporium is reported, namely a description of its three‐dimensional architecture, where the outermost crystalline layer must act as a scaffold for binding the BclA protein that contributes to the ‘hairy nap’ layer.
Abstract: We report on the first step in mapping out the spatial location of structural proteins within the exosporium, namely a description of its three-dimensional architecture. Using electron microscopy and image analysis, we have characterized crystalline fragments from the exosporium of Bacillus cereus, B. thuringiensis and B. anthracis strains and identified up to three distinct crystal types. Type I and type II crystals were examined in three dimensions and shown to form arrays of interlinked crown-like structures each enclosing a cavity approximately 26-34 A deep with threefold symmetry. The arrays appear to be permeated by tunnels allowing access from one surface to the other, possibly indicating that the exosporium forms a semi-permeable barrier. The pore size of approximately 23-34 A would allow passage of the endospore germinants, alanine or inosine but not degradative enzymes or antibodies. Thus the structures appear compatible with a protective role for the exosporium. Furthermore the outermost crystalline layer must act as a scaffold for binding the BclA protein that contributes to the 'hairy nap' layer. The array of crowns may also act as a matrix for the binding or adsorption of other proteins that have been identified in the exosporium such as GroEL, immune inhibitor A and arginase.

86 citations

Journal ArticleDOI
TL;DR: This article reported the concentration of ice nucleating particles in dust laden air over the tropical Atlantic within a few days' transport of one of the world's most important atmospheric sources of desert dust, the Sahara.
Abstract: Desert dust is one of the most important atmospheric ice-nucleating aerosol species around the globe. However, there have been very few measurements of ice-nucleating particle (INP) concentrations in dusty air close to desert sources. In this study we report the concentration of INPs in dust laden air over the tropical Atlantic within a few days' transport of one of the world's most important atmospheric sources of desert dust, the Sahara. These measurements were performed as part of the Ice in Clouds Experiment-Dust campaign based in Cape Verde, during August 2015. INP concentrations active in the immersion mode, determined using a droplet-on-filter technique, ranged from around 10² m⁻³ at -12°C to around 10⁵ m⁻³ at -23°C. There is about 2 orders of magnitude variability in INP concentration for a particular temperature, which is determined largely by the variability in atmospheric dust loading. These measurements were made at altitudes from 30 to 3,500 m in air containing a range of dust loadings. The ice active site density (n s ) for desert dust dominated aerosol derived from our measurements agrees with several laboratory-based parameterizations for ice nucleation by desert dust within 1 to 2 orders of magnitude. The small variability in n s values determined from our measurements (within about 1 order of magnitude) is striking given that the back trajectory analysis suggests that the sources of dust were geographically diverse. This is consistent with previous work, which indicates that desert dust's ice-nucleating activity is only weakly dependent on source.

86 citations

Journal ArticleDOI
TL;DR: A novel system (the flow-focusing aerosol generator [FFAG] which enables the generation of large (>10-μm) aerosol particles containing microorganisms under laboratory conditions was characterized to permit determination of deposition profiles within the murine respiratory tract.
Abstract: The deposition patterns of large-particle microbiological aerosols within the respiratory tract are not well characterized. A novel system (the flow-focusing aerosol generator [FFAG]) which enables the generation of large (>10-microm) aerosol particles containing microorganisms under laboratory conditions was characterized to permit determination of deposition profiles within the murine respiratory tract. Unlike other systems for generating large aerosol particles, the FFAG is compatible with microbiological containment and the inhalational challenge of animals. By use of entrapped Escherichia coli cells, Bacillus atrophaeus spores, or FluoSphere beads, the properties of aerosols generated by the FFAG were compared with the properties of aerosols generated using the commonly available Collison nebulizer, which preferentially generates small (1- to 3-microm) aerosol particles. More entrapped particulates (15.9- to 19.2-fold) were incorporated into 9- to 17-microm particles generated by the FFAG than by the Collison nebulizer. The 1- to 3-microm particles generated by the Collison nebulizer were more likely to contain a particulate than those generated by the FFAG. E. coli cells aerosolized using the FFAG survived better than those aerosolized using the Collison nebulizer. Aerosols generated by the Collison nebulizer and the FFAG preferentially deposited in the lungs and nasal passages of the murine respiratory tract, respectively. However, significant deposition of material also occurred in the gastrointestinal tract after inhalation of both the small (89.7%)- and large (61.5%)-particle aerosols. The aerosols generated by the Collison nebulizer and the FFAG differ with respect to mass distribution, distribution of the entrapped particulates, bacterial survival, and deposition within the murine respiratory tract.

85 citations

Journal ArticleDOI
TL;DR: In BALB/c mice inoculated orally or intravenously with the dam mutant, the median lethal dose was at least 10(6)-fold higher than the MLD of the wild-type.
Abstract: Inactivation of the gene encoding DNA adenine methylase (dam) has been shown to attenuate some pathogens such as Salmonella enterica serovar Typhimurium and is a lethal mutation in others such as Yersinia pseudotuberculosis strain YPIII. In this study the dam methylase gene in Yersinia pseudotuberculosis strain IP32953 was inactivated. Unlike the wild-type, DNA isolated from the mutant could be digested with MboI, which is consistent with an altered pattern of DNA methylation. The mutant was sensitive to bile salts but not to 2-aminopurine. The effect of dam inactivation on gene expression was examined using a DNA microarray. In BALB/c mice inoculated orally or intravenously with the dam mutant, the median lethal dose (MLD) was at least 106-fold higher than the MLD of the wild-type. BALB/c mice inoculated with the mutant were protected against a subcutaneous challenge with 100 MLDs of Yersinia pestis strain GB and an intravenous challenge with 300 MLDs of Y. pseudotuberculosis IP32953.

84 citations


Authors

Showing all 928 results

NameH-indexPapersCitations
Richard W. Titball7941022484
Andrew D. Griffiths7215237590
Alan D.T. Barrett7134117136
Jim Haywood6721320503
Philip N. Bartlett5829312798
Alan C. Newell5820917820
David A. Rand5722312157
Michael P. O'Donnell493018762
James Hill472166837
Franz Worek462628754
Petra C. F. Oyston451277155
K. Ravi Acharya451617405
Horst Thiermann432987091
Leigh T. Canham4216018268
Mark J. Midwinter391805330
Network Information
Related Institutions (5)
University of Glasgow
98.2K papers, 3.8M citations

85% related

University of Edinburgh
151.6K papers, 6.6M citations

83% related

Ghent University
111K papers, 3.7M citations

83% related

University of Birmingham
115.3K papers, 4.3M citations

83% related

University of Bristol
113.1K papers, 4.9M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20224
202178
202079
2019115
201878
201772