scispace - formally typeset
Search or ask a question
Institution

Defence Science and Technology Laboratory

GovernmentSalisbury, United Kingdom
About: Defence Science and Technology Laboratory is a government organization based out in Salisbury, United Kingdom. It is known for research contribution in the topics: Burkholderia pseudomallei & Francisella tularensis. The organization has 926 authors who have published 1242 publications receiving 30091 citations. The organization is also known as: Dstl & [dstl].


Papers
More filters
Journal ArticleDOI
TL;DR: The first Coxiella protein involved in host cell invasion is identified, suggesting the presence of a cognate receptor at the surface of host cells, as well as developing multi-phenotypic assays for the study of host/pathogen interactions.
Abstract: Coxiella burnetii is the agent of the emerging zoonosis Q fever. This pathogen invades phagocytic and non-phagocytic cells and uses a Dot/Icm secretion system to co-opt the endocytic pathway for the biogenesis of an acidic parasitophorous vacuole where Coxiella replicates in large numbers. The study of the cell biology of Coxiella infections has been severely hampered by the obligate intracellular nature of this microbe, and Coxiella factors involved in host/pathogen interactions remain to date largely uncharacterized. Here we focus on the large-scale identification of Coxiella virulence determinants using transposon mutagenesis coupled to high-content multi-phenotypic screening. We have isolated over 3000 Coxiella mutants, 1082 of which have been sequenced, annotated and screened. We have identified bacterial factors that regulate key steps of Coxiella infections: 1) internalization within host cells, 2) vacuole biogenesis/intracellular replication, and 3) protection of infected cells from apoptosis. Among these, we have investigated the role of Dot/Icm core proteins, determined the role of candidate Coxiella Dot/Icm substrates previously identified in silico and identified additional factors that play a relevant role in Coxiella pathogenesis. Importantly, we have identified CBU_1260 (OmpA) as the first Coxiella invasin. Mutations in ompA strongly decreased Coxiella internalization and replication within host cells; OmpA-coated beads adhered to and were internalized by non-phagocytic cells and the ectopic expression of OmpA in E. coli triggered its internalization within cells. Importantly, Coxiella internalization was efficiently inhibited by pretreating host cells with purified OmpA or by incubating Coxiella with a specific anti-OmpA antibody prior to host cell infection, suggesting the presence of a cognate receptor at the surface of host cells. In summary, we have developed multi-phenotypic assays for the study of host/pathogen interactions. By applying our methods to Coxiella burnetii, we have identified the first Coxiella protein involved in host cell invasion.

114 citations

Journal ArticleDOI
TL;DR: The in vivo role of cytokine- versus antigen-mediated T cell activation in resistance to the pathogenic bacterium Burkholderia pseudomallei is investigated and CD4(+) T cells played an important role during the later stage of infection.
Abstract: Antigen-specific T cells are important sources of interferon (IFN)-gamma for acquired immunity to intracellular pathogens, but they can also produce IFN- gamma directly via a "bystander" activation pathway in response to proinflammatory cytokines. We investigated the in vivo role of cytokine- versus antigen-mediated T cell activation in resistance to the pathogenic bacterium Burkholderia pseudomallei. IFN-gamma, interleukin (IL)-12, and IL-18 were essential for initial bacterial control in infected mice. B. pseudomallei infection rapidly generated a potent IFN-gamma response from natural killer (NK) cells, NK T cells, conventional T cells, and other cell types within 16 h after infection, in an IL-12- and IL-18-dependent manner. However, early T cell- and NK cell-derived IFN-gamma responses were functionally redundant in cell depletion studies, with IFN-gamma produced by other cell types, such as major histocompatibility complex class II(int) F4/80(+) macrophages being sufficient for initial resistance. In contrast, B. pseudomallei-specific CD4(+) T cells played an important role during the later stage of infection. Thus, the T cell response to primary B. pseudomallei infection is biphasic, an early cytokine-induced phase in which T cells appear to be functionally redundant for initial bacterial clearance, followed by a later antigen-induced phase in which B. pseudomallei-specific T cells, in particular CD4(+) T cells, are important for host resistance.

112 citations

Journal ArticleDOI
TL;DR: It is demonstrated how the presence of ‘sacrificial’ bonds in the coordination environment of its metal centres (referred to as hemilability) endows a dehydrated copper-based MOF with good hydrolytic stability.
Abstract: Highly porous metal–organic frameworks (MOFs), which have undergone exciting developments over the past few decades, show promise for a wide range of applications. However, many studies indicate that they suffer from significant stability issues, especially with respect to their interactions with water, which severely limits their practical potential. Here we demonstrate how the presence of ‘sacrificial’ bonds in the coordination environment of its metal centres (referred to as hemilability) endows a dehydrated copper-based MOF with good hydrolytic stability. On exposure to water, in contrast to the indiscriminate breaking of coordination bonds that typically results in structure degradation, it is non-structural weak interactions between the MOF’s copper paddlewheel clusters that are broken and the framework recovers its as-synthesized, hydrated structure. This MOF retained its structural integrity even after contact with water for one year, whereas HKUST-1, a compositionally similar material that lacks these sacrificial bonds, loses its crystallinity in less than a day under the same conditions. The promise shown by metal–organic frameworks for various applications is somewhat dampened by their instability towards water. Now, an activated MOF has shown good hydrolytic stability owing to the presence of weak, sacrificial coordination bonds that act as a ‘crumple zone’. On hydration, these weak bonds are cleaved preferentially to stronger coordination bonds that hold the MOF together.

111 citations

Journal ArticleDOI
TL;DR: It is established that repeat‐mediated loss of one of the putative pilin genes in a type B strain results in severe virulence attenuation in mice infected by subcutaneous route and indicates that this putative Pilin is critical for Francisella infections that occur via peripheral routes.
Abstract: Francisella tularensis, the causative agent of tularaemia, is a highly infectious and virulent intracellular pathogen. There are two main human pathogenic subspecies, Francisella tularensis ssp. tularensis (type A), and Francisella tularensis ssp. holarctica (type B). So far, knowledge regarding key virulence determinants is limited but it is clear that intracellular survival and multiplication is one major virulence strategy of Francisella. In addition, genome sequencing has revealed the presence of genes encoding type IV pili (Tfp). One genomic region encoding three proteins with signatures typical for type IV pilins contained two 120 bp direct repeats. Here we establish that repeat-mediated loss of one of the putative pilin genes in a type B strain results in severe virulence attenuation in mice infected by subcutaneous route. Complementation of the mutant by introduction of the pilin gene in cis resulted in complete restoration of virulence. The level of attenuation was similar to that of the live vaccine strain and this strain was also found to lack the pilin gene as result of a similar deletion event mediated by the direct repeats. Presence of the pilin had no major effect on the ability to interact, survive and multiply inside macrophage-like cell lines. Importantly, the pilin-negative strain was impaired in its ability to spread from the initial site of infection to the spleen. Our findings indicate that this putative pilin is critical for Francisella infections that occur via peripheral routes.

109 citations

Journal ArticleDOI
28 Feb 2014-Mbio
TL;DR: Transposon-directed insertion site sequencing (TraDIS) of a library of over 106 transposon insertion mutants is described, which provides the level of genome saturation required to identify essential genes in B. pseudomallei and generates a list of genes predicted to be essential, demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied.
Abstract: Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infectious disease for which there is no vaccine. B. pseudomallei is listed as a tier 1 select agent, and as current therapeutic options are limited due to its natural resistance to most antibiotics, the development of new antimicrobial therapies is imperative. To identify drug targets and better understand the complex B. pseudomallei genome, we sought a genome-wide approach to identify lethal gene targets. As B. pseudomallei has an unusually large genome spread over two chromosomes, an extensive screen was required to achieve a comprehensive analysis. Here we describe transposon-directed insertion site sequencing (TraDIS) of a library of over 10 6 transposon insertion mutants, which provides the level of genome saturation required to identify essential genes. Using this technique, we have identified a set of 505 genes that are predicted to be essential in B. pseudomallei K96243. To validate our screen, three genes predicted to be essential, pyrH , accA , and sodB , and a gene predicted to be nonessential, bpss0370 , were independently investigated through the generation of conditional mutants. The conditional mutants confirmed the TraDIS predictions, showing that we have generated a list of genes predicted to be essential and demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied. IMPORTANCE Burkholderia pseudomallei is a lethal human pathogen that is considered a potential bioterrorism threat and has limited treatment options due to an unusually high natural resistance to most antibiotics. We have identified a set of genes that are required for bacterial growth and thus are excellent candidates against which to develop potential novel antibiotics. To validate our approach, we constructed four mutants in which gene expression can be turned on and off conditionally to confirm that these genes are required for the bacteria to survive.

108 citations


Authors

Showing all 928 results

NameH-indexPapersCitations
Richard W. Titball7941022484
Andrew D. Griffiths7215237590
Alan D.T. Barrett7134117136
Jim Haywood6721320503
Philip N. Bartlett5829312798
Alan C. Newell5820917820
David A. Rand5722312157
Michael P. O'Donnell493018762
James Hill472166837
Franz Worek462628754
Petra C. F. Oyston451277155
K. Ravi Acharya451617405
Horst Thiermann432987091
Leigh T. Canham4216018268
Mark J. Midwinter391805330
Network Information
Related Institutions (5)
University of Glasgow
98.2K papers, 3.8M citations

85% related

University of Edinburgh
151.6K papers, 6.6M citations

83% related

Ghent University
111K papers, 3.7M citations

83% related

University of Birmingham
115.3K papers, 4.3M citations

83% related

University of Bristol
113.1K papers, 4.9M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20224
202178
202079
2019115
201878
201772