scispace - formally typeset
Search or ask a question
Institution

Indian Association for the Cultivation of Science

EducationKolkata, India
About: Indian Association for the Cultivation of Science is a education organization based out in Kolkata, India. It is known for research contribution in the topics: Catalysis & Excited state. The organization has 3867 authors who have published 10457 publications receiving 220098 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new class of hydrogelators based on synthetic self-assembling N-terminally Boc-protected tripeptides has been developed, which can be potentially utilized for the treatment of waste-water and the organic dyes (Rhodamine B, Reactive Blue 4 and Direct Red 80) that are widely used in textile industries.
Abstract: A new class of hydrogelators based on synthetic self-assembling N-terminally Boc-protected tripeptides has been developed. A series of five tripeptides have been synthesized to study their self-assembling behavior in aqueous medium. Three of them form thermoreversible translucent gels at basic pH (pH 11.5–13.5). These hydrogels were characterized by FT-IR spectroscopy, circular dichroism (CD), small angle X-ray diffraction analysis (SAXRD), field-emission scanning electron microscopic (FE-SEM), transmission electron microscopic (TEM) and atomic force microscopic (AFM) studies. These hydrogels can be potentially utilized for the treatment of waste-water and the organic dyes (Rhodamine B, Reactive Blue 4 and Direct Red 80) that are widely used in textile industries can be efficiently removed. Moreover, peptide gelators can be recovered very easily just by changing the pH of the medium.

232 citations

Journal ArticleDOI
TL;DR: In this paper, needle-shaped narrow hexagonal phase 1D nanostructures of dicobalt phosphide (Co2P) are reported as efficient electrocatalysts for the oxygen evolution reaction (OER).
Abstract: Needle-shaped narrow hexagonal phase 1D nanostructures of dicobalt phosphide (Co2P) are reported as efficient electrocatalysts for the oxygen evolution reaction (OER). Without other metal incorporation, which was typically followed for enhancing the OER activity, the electrochemical performance was observed to be superior in comparison to all reported cobalt-based nanostructured metal phosphides. For anodic metamorphosis, these nanostructures, like all other metal phosphides, undergo surface oxidation but remain more active and superior to pure cobalt oxides as well as surface-oxidized different shaped monocobalt phosphides. Moreover, the synthesis was also followed by adopting a moderate synthetic protocol where PH3 gas was used as a phosphorus source and also scaled up to the gram level. In addition, the hydrogen evolution reaction (HER) performance of these phosphides was further studied, and the performance was observed to be comparable to that in the best reports.

232 citations

Journal ArticleDOI
TL;DR: Iron containing porous organic polymers have been synthesized by a facile one-pot bottom-up approach to porphyrin chemistry by an extended aromatic substitution reaction between pyrrole and aromatic dialdehydes in the presence of small amount of Fe(III).

232 citations

Journal ArticleDOI
TL;DR: In this article, a miscible homopolymer-copolymer pair viz., poly(ethyl methacrylate) (PEMA) and poly(styrene-co-butyl acrylate), was reported.
Abstract: A miscible homopolymer–copolymer pair viz., poly(ethyl methacrylate) (PEMA)–poly(styrene-co-butyl acrylate) (SBA) is reported. The miscibility has been studied using differential scanning calorimetry. While 1 : 1 (w/w) blends with SBA containing 23 and 34 wt % styrene (ST) become miscible only above 225 and 185 °C respectively indicating existence of UCST, those with SBA containing 63 wt % ST is miscible at the lowest mixing temperature (i.e., Tg's) but become immiscible when heated at ca 250 °C indicating the existence of LCST. Miscibility for blends with SBA of still higher ST content could not be determined by this method because of the closeness of the Tg's of the components. The miscibility window at 230 °C refers to the two copolymer compositions of which one with the lower ST content is near the UCST, while the other with the higher ST content is near the LCST. Using these compositions and the mean field theory binary interaction parameters between the monomer residues have been calculated. The values are χST-BA = 0.087 and χEMA-BA = 0.013 at 230 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 369–375, 2000

230 citations

Journal ArticleDOI
TL;DR: The present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Abstract: In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.

228 citations


Authors

Showing all 3900 results

NameH-indexPapersCitations
Yves Pommier12378958898
Flemming Besenbacher11472851827
Katsuhiko Ariga11286445242
Shunichi Fukuzumi111125652764
Rajdeep Mohan Chatterjee11099051407
Kwang S. Kim9764262053
Amar K. Mohanty8153831856
Nigel D. Browning8164623621
Andrea Caneschi8043525896
Rodolphe Clérac7850622604
Subrata Ghosh7884132147
Miaofang Chi7730422817
Yuan Ping Feng7765025846
D. D. Sarma7052118082
Asim Bhaumik6946616882
Network Information
Related Institutions (5)
National Chemical Laboratory
14.8K papers, 387.6K citations

94% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

91% related

National Institute for Materials Science
29.2K papers, 880.9K citations

91% related

Dalian Institute of Chemical Physics
17.1K papers, 577.7K citations

91% related

Indian Institute of Science
62.4K papers, 1.2M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202283
2021444
2020447
2019452
2018467