scispace - formally typeset
Search or ask a question
Institution

Indian Association for the Cultivation of Science

EducationKolkata, India
About: Indian Association for the Cultivation of Science is a education organization based out in Kolkata, India. It is known for research contribution in the topics: Catalysis & Excited state. The organization has 3867 authors who have published 10457 publications receiving 220098 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This bactericidal effect of cationic hydrogelators is quite comparable or in some cases markedly better than that of clinically available antibiotics and most excitingly, they selectively attack the bacterial pathogens while remain biocompatible to the mammalian cells.
Abstract: Development of biomaterials, which are inherently antibacterial having broad-spectrum activity against both Gram-positive and Gram-negative bacteria with considerable biocompatibility, is of tremendous importance in biomedicinal chemistry. Microbial infections are still of great concern, often originated from indwelling medical devices typically in hospitalized patients. To this end, hydrogelating soft materials particularly from low-molecular-weight (LMW) gelators have generated significant interest in preparing and modifying biomedicinal implants. Herein, we have developed L-tryptophan based cationic amphiphilic hydrogelators with varying degree of hydrophobicity that exhibited remarkable bactericidal activity against wide range of Gram-positive (MIC = 0.1–75 µg/mL) and Gram-negative bacteria (MIC = 0.5–5 µg/mL). Antimicrobial efficacy of the amphiphiles was greatly influenced by their alkyl chain length. This bactericidal effect of cationic hydrogelators is quite comparable or in some cases markedly better than that of clinically available antibiotics. Most excitingly, they selectively attack the bacterial pathogens while remain biocompatible to the mammalian cells. Thus, we have developed LMW biocompatible, inherently antibacterial hydrogels having potential applications in biomedicines. Biotechnol. Bioeng. 2008;100: 756–764. © 2008 Wiley Periodicals, Inc.

100 citations

Journal ArticleDOI
TL;DR: It is shown that both the main and the satellite peaks from UCC-LRT for the one valence problems are core-valence extensive owing to the hermitized nature of the underlying operator to be diagonalized, and hence the energy differences are fully extensive.
Abstract: In this paper we have discussed in detail the aspects of separability of the energy differences obtained from coupled cluster based “direct” methods such as the open-shell Coupled Cluster (CC) theory and the Coupled Cluster based Linear Response Theory (CC-LRT). It has been emphasized that, unlike the state energiesper se, the energy differences have a semi-local character in that, in the asymptotic limit of non-interacting subsystemsA, B, C, etc., they are separable as ΔE A , ΔE B , ΔE A + ΔE B , etc. depending on the subsystems excited. We classify the direct many-body methods into two categories: core-extensive and core-valence extensive. In the former, we only implicitly subtract the ground state energy computed in a size-extensive manner; the energy differences are not chosen to be valence-extensive (separable) in the semi-local sense. The core-valence extensive theories, on the other hand, are fully extensive — i.e., with respect to both core and valence interactions, and hence display the semi-local separability. Generic structures of the wave-operators for core-extensive and core-valence extensive theories are discussed. CC-LRT is shown to be core-extensive after a transcription to an equivalent wave-operator based form. The emergence of valence disconnected diagrams for two and higher valence problems are indicated. The open-shell CC theory is shown to be core-valence extensive and hence fully connected. For one valence problems, the CC theory and the CC-LRT are shown to be equivalent. The equations for the cluster amplitudes in the Bloch equation are quadratic, admitting of multiple solutions. It is shown that the cluster amplitudes for the main peaks, in principle obtainable as a series inV from the zeroth order roots of the model space, are connected, and hence the energy differences are fully extensive. It is remarkable that the satellite energies obtained from the alternative solutions of the CC equations are not valence-extensive, indicating the necessity of a formal power series structure inV of the cluster amplitudes for the valence-extensivity. The alternative solutions are not obtainable as a power series inV. The CC-LRT is shown to have an effective hamiltonian structure respecting “downward reducibility”. A unitary version of CC-LRT (UCC-LRT) is proposed, which satisfy both upward and downward reducibility. UCC-LRT is shown to lead to the recent propagator theory known as the Algebraic Diagrammatic Construction. It is shown that both the main and the satellite peaks from UCC-LRT for the one valence problems are core-valence extensive owing to the hermitized nature of the underlying operator to be diagonalized.

100 citations

Journal ArticleDOI
TL;DR: In this article, a Schiff base copper complex and its immobilized analogue supported on organically modified silica was used for allyl oxidization of cyclohexene with different oxidants like dilute aqueous hydrogen peroxide and tert-butyl hydroperoxide.
Abstract: Allylic oxidation of cyclohexene was carried out over a Schiff base copper complex and its immobilized analogue supported on organically modified silica. The immobilized complex has been characterized by using atomic absorption spectrophotometry (AAS), FT-IR, EPR and UV–vis spectroscopic studies and SEM image analysis. The catalytic oxidation of cyclohexene was carried out over this copper complex and the immobilized analog with different oxidants like dilute aqueous hydrogen peroxide and tert-butyl hydroperoxide at ambient conditions. Acetonitrile and water was used as solvent and dispersion medium, respectively, with or without additional acid in different sets of oxidation reactions. 2-Cyclohexen-1-one was obtained as the major product with small amounts of cyclohexene oxide, 2-cyclohexen-1-ol and 1,2-cyclohexane-diol. The activity of the immobilized catalyst remains nearly the same after two cycles, suggesting the true heterogeneous nature of the catalyst.

100 citations

Journal ArticleDOI
TL;DR: Results revealed transformation of smooth discoid red cells into evaginated echinocytic form in the exposed individuals and the involvement of both erythrophagocytosis and hemolysis in the destruction of human erythrocytes during chronic arsenic exposure.

100 citations

Journal ArticleDOI
TL;DR: 2,6-Divinylpyridine-appended anthracene derivatives flanked by two alkyl chains at the 9,10-position of the core have been designed, synthesized, and characterized by NMR, MALDI-TOF, FTIR, and single-crystal XRD.
Abstract: 2,6-Divinylpyridine-appended anthracene derivatives flanked by two alkyl chains at the 9,10-position of the core have been designed, synthesized, and characterized by NMR, MALDI-TOF, FTIR, and single-crystal XRD. These anthracene derivatives are able to recognize picric acid (2,4,6-trinitrophenol, PA) selectively down to parts per billion (ppb) level in aqueous as well as nonaqueous medium. Fluorescence emission of these derivatives in solution is significantly quenched by adding trace amounts of PA, even in the presence of other competing analogues, such as 2,4-dinitrophenol (2,4-DNP), 4-nitrophenol (NP), nitrobenzene (NB), benzoic acid (BA), and phenol (PH). The high sensitivity of these derivatives toward PA is considered as a combined effect of the proton-induced intramolecular charge transfer (ICT) as well as electron transfer from the electron-rich anthracene to the electron-deficient PA. Moreover, visual detection of PA has been successfully demonstrated in the solid state by using different substrates.

100 citations


Authors

Showing all 3900 results

NameH-indexPapersCitations
Yves Pommier12378958898
Flemming Besenbacher11472851827
Katsuhiko Ariga11286445242
Shunichi Fukuzumi111125652764
Rajdeep Mohan Chatterjee11099051407
Kwang S. Kim9764262053
Amar K. Mohanty8153831856
Nigel D. Browning8164623621
Andrea Caneschi8043525896
Rodolphe Clérac7850622604
Subrata Ghosh7884132147
Miaofang Chi7730422817
Yuan Ping Feng7765025846
D. D. Sarma7052118082
Asim Bhaumik6946616882
Network Information
Related Institutions (5)
National Chemical Laboratory
14.8K papers, 387.6K citations

94% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

91% related

National Institute for Materials Science
29.2K papers, 880.9K citations

91% related

Dalian Institute of Chemical Physics
17.1K papers, 577.7K citations

91% related

Indian Institute of Science
62.4K papers, 1.2M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202283
2021444
2020447
2019452
2018467