scispace - formally typeset
Search or ask a question
Institution

Indian Association for the Cultivation of Science

EducationKolkata, India
About: Indian Association for the Cultivation of Science is a education organization based out in Kolkata, India. It is known for research contribution in the topics: Catalysis & Excited state. The organization has 3867 authors who have published 10457 publications receiving 220098 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the dielectric relaxation spectroscopy of PANI-PVA composites has been investigated in the temperature range 110-300 K and in the frequency range 200-10 MHz near the percolation threshold.

165 citations

Journal ArticleDOI
TL;DR: The reported fluorescent Ag nanoclusters within hydrogel are very stable even after 6 months storage in the dark at 4 °C and could have applications in antibacterial preparations, bioimaging and other purposes.
Abstract: N-terminally Fmoc-protected dipeptide, Fmoc-Val-Asp-OH, forms a transparent, stable hydrogel with a minimum gelation concentration of 0.2 % w/v. The gelation property of the hydrogel was investigated by using methods such as transmission electron microscopy, field-emission scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy. The silver-ion-encapsulating hydrogel can efficiently and spontaneously produce fluorescent silver nanoclusters under sunlight at physiological pH (7.46) by using a green chemistry approach. Interestingly, in the absence of any conventional reducing agent but in the presence of sunlight, silver ions were reduced by the carboxylate group of a gelator peptide that contains an aspartic acid residue. These clusters were investigated by using UV/Vis spectroscopy, photoluminescence spectroscopy, high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) studies. Mass spectrometric analysis shows the presence of a few atoms in nanoclusters containing only Ag2. The reported fluorescent Ag nanoclusters show excellent optical properties, including a very narrow emission profile and large Stokes shift (>100 nm). The reported fluorescent Ag nanoclusters within hydrogel are very stable even after 6 months storage in the dark at 4 °C. The as-prepared hydrogel–nanocluster conjugate could have applications in antibacterial preparations, bioimaging and other purposes.

165 citations

Journal ArticleDOI
TL;DR: In this article, the performance of the fibers as a reinforcing material in the composites was analyzed using DTG and DSC technique. But the results showed that the reduction in percentage moisture loss for the fibers treated with alkali for 6 and 8 h could be the result of the increased crystallinity of the fiber.
Abstract: Jute fibers were treated with 5% NaOH solution for 2, 4, 6, and 8 h to study the performance of the fibers as a reinforcing material in the composites. Thermal analysis of the fibers was done by the DTG and DSC technique. The moisture desorption was observed at a lower temperature in the case of all the treated fibers, which might be a result of the increased fineness of the fibers, which provides more surface area for moisture evaporation. The decrease in percentage moisture loss for the fibers treated with alkali for 6 and 8 h could be the result of the increased crystallinity of the fibers. The percentage degradation of the hemicellulose decreased considerably in all the treated fibers, conforming to the fact that the hemicellulose content was lowered on alkali treatment. The decomposition temperature for α-cellulose was lowered to 348°C from 362.2°C for all the treated fibers, and the residual char formation increased to a significant extent. The enthalpy for the thermal degradation of α-cellulose showed a decreasing trend for the fibers treated for 2 and 4 h, which could be caused by the initial loosening of the structure, followed by an increase in the enthalpy value in the case of the 6- and 8-h-alkali-treated fibers resulting from increased crystallinity, as evident from the X-ray diffraction. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2594–2599, 2002

164 citations

Journal ArticleDOI
TL;DR: The catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles.
Abstract: Bimetallic core–shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core–shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core–shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV–vis study confirm the formation of core–shell nanoparticles. We have examined the catalytic activity of these core–shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core–shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core–shell nanoparticles, and the Au100/Ag bimet...

164 citations


Authors

Showing all 3900 results

NameH-indexPapersCitations
Yves Pommier12378958898
Flemming Besenbacher11472851827
Katsuhiko Ariga11286445242
Shunichi Fukuzumi111125652764
Rajdeep Mohan Chatterjee11099051407
Kwang S. Kim9764262053
Amar K. Mohanty8153831856
Nigel D. Browning8164623621
Andrea Caneschi8043525896
Rodolphe Clérac7850622604
Subrata Ghosh7884132147
Miaofang Chi7730422817
Yuan Ping Feng7765025846
D. D. Sarma7052118082
Asim Bhaumik6946616882
Network Information
Related Institutions (5)
National Chemical Laboratory
14.8K papers, 387.6K citations

94% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

91% related

National Institute for Materials Science
29.2K papers, 880.9K citations

91% related

Dalian Institute of Chemical Physics
17.1K papers, 577.7K citations

91% related

Indian Institute of Science
62.4K papers, 1.2M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202283
2021444
2020447
2019452
2018467