scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Madras

FacilityChennai, Tamil Nadu, India
About: Indian Institute of Technology Madras is a facility organization based out in Chennai, Tamil Nadu, India. It is known for research contribution in the topics: Catalysis & Heat transfer. The organization has 20118 authors who have published 36499 publications receiving 590447 citations.


Papers
More filters
Journal ArticleDOI
A.L. Sibidanov1, Kevin Varvell1, I. Adachi, Hiroaki Aihara2  +165 moreInstitutions (55)
TL;DR: In this article, the authors report the results of a study of the exclusive semileptonic decays in a hadronic decay model, where the events are tagged by fully reconstructing a second $B$ meson in the event.
Abstract: We report the results of a study of the exclusive semileptonic decays ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$ and ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}\ensuremath{\omega}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, where $\ensuremath{\ell}$ represents an electron or a muon. The events are tagged by fully reconstructing a second $B$ meson in the event in a hadronic decay mode. The measured branching fractions are $\mathcal{B}({B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(0.80\ifmmode\pm\else\textpm\fi{}0.08\ifmmode\pm\else\textpm\fi{}0.04)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, $\mathcal{B}({\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(1.49\ifmmode\pm\else\textpm\fi{}0.09\ifmmode\pm\else\textpm\fi{}0.07)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, $\mathcal{B}({B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(1.83\ifmmode\pm\else\textpm\fi{}0.10\ifmmode\pm\else\textpm\fi{}0.10)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, $\mathcal{B}({\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(3.22\ifmmode\pm\else\textpm\fi{}0.27\ifmmode\pm\else\textpm\fi{}0.24)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, and $\mathcal{B}({B}^{\ensuremath{-}}\ensuremath{\rightarrow}\ensuremath{\omega}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(1.07\ifmmode\pm\else\textpm\fi{}0.16\ifmmode\pm\else\textpm\fi{}0.07)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, where the first error is statistical and the second one is systematic. The obtained branching fractions are inclusive of soft photon emission. We also determine the branching fractions as a function of the 4-momentum transfer squared to the leptonic system ${q}^{2}=({p}_{\ensuremath{\ell}}+{p}_{\ensuremath{ u}}{)}^{2}$, where ${p}_{\ensuremath{\ell}}$ and ${p}_{\ensuremath{ u}}$ are the lepton and neutrino 4-momenta, respectively. Using the pion modes, a recent light cone sum rule calculation, lattice QCD results and a model-independent description of the hadronic form factor, a value of the Cabibbo-Kobayashi-Maskawa matrix element $|{V}_{ub}|=(3.52\ifmmode\pm\else\textpm\fi{}0.29)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$ is extracted. A structure in the two-pion invariant mass distribution near $1.3\text{ }\text{ }\mathrm{GeV}/{c}^{2}$, which might be dominated by the decay ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{f}_{2}(1270){\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${f}_{2}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$, is seen. These results are obtained from a $711\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ data sample that contains $772\ifmmode\times\else\texttimes\fi{}{10}^{6}$ $B\overline{B}$ pairs, collected near the $\ensuremath{\Upsilon}(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy ${e}^{+}{e}^{\ensuremath{-}}$ collider.

132 citations

Journal ArticleDOI
TL;DR: In this article, the physicochemical properties of ZnAlAn-like compounds were studied using powder X-ray diffraction (PXRD), infrared (IR) and laser Raman (LR) spectra, thermogravimetry (TG), differential scanning calorimetry, evolved gas analysis (EGA), 27Al MAS NMR, and pore-size determination.
Abstract: Zinc–aluminium hydrotalcite-like compounds (ZnAlAn-–HT) with a Zn/Al atomic ratio 2.0 and An- = CO2-3, Cl-, NO-3 and SO2-4, were synthesized by coprecipitation under low supersaturation. Their physicochemical properties were studied using powder X-ray diffraction (PXRD), infrared (IR) and laser Raman (LR) spectra, thermogravimetry (TG), differential scanning calorimetry (DSC), evolved gas analysis (EGA), 27Al MAS NMR, BET surface area and pore-size determination. The PXRD of the synthesized samples showed that the crystallinity was affected by the nature of the anions present in the interlayer space. The IR and LR studies revealed that except the NO-3 ion, the symmetry of these interlayer anions was reduced upon intercalation. The TG, DSC and EGA results showed two or three stages of weight loss corresponding to the removal of the interlayer water, structural water and the anion, respectively. The activation energy, Ea, for the decomposition process was found to decrease in the order ZnAlCO3–HT>ZnAlSO4–HT>ZnAlCl–HT>ZnAlNO3–HT. Formation of a pentacoordinated Al (AlV) in addition to the octahedral (AlVI) and tetrahedral Al (AlIV) was the special feature noticed in the 27Al MAS NMR of the calcined samples. Thermal calcination around 500 °C resulted in the formation of non-stoichiometric ZnO whose crystallinity decreased in the order ZnAlNO3–CHT>ZnAlCl–CHT>ZnAlSO4–CHT>ZnAlCO3–HT while their extent of solid solubility was found to be the reverse. The crystallinity of the calcined samples was also correlated with surface area and pore-size determination.

132 citations

Journal ArticleDOI
TL;DR: A general palladium-catalyzed aryl(alkyl)thiolation of various substituted unactivated arenes is accomplished for the synthesis of diverse unsymmetrical diaryl(alksyl) sulfides in good yield employing electrophilic sulfur reagent 6 derived from succinimide.

132 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrated the CO2adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures, using high pressure Sieverts apparatus and calculated by gas equation using van der Waals corrections.
Abstract: Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes) have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 oC).

131 citations

Journal ArticleDOI
TL;DR: In this article, various hydrotalcite based catalysts were tested for catalytic decomposition of N2O and the optimal ratio of Co/Al is 3.0.
Abstract: Various hydrotalcite based catalysts were prepared for testing for the catalytic decomposition of N2O. CoAl, NiAl, Co/PdAl, Co/RhAl, and Co/MgAL substituted hydrotalcites and CoLaAl hydroxides offer very good activity at modest temperatures. Precalcination of these materials at ca. 450–500°C, which destroys the hydrotalcite phase, is necessary for optimum activity and life. For Co substituted hydrotalcites, the optimal ratio of Co/Al is 3.0. The temperature for 50% conversion of N2O of these calcined cobalt hydrotalcites is ca. 75°C lower than for the previous highly active Co-ZSM-5. These calcined cobalt hydrotalcite materials display sustained life at temperatures in excess of 670°C in an O2 rich, wet stream with high levels of N2O [10%]. Excess O2 does not seriously impact N2O decomposition, but the combination of both water vapor and O2 does reduce activity by ca. 50%.

131 citations


Authors

Showing all 20385 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Xiaodong Wang1351573117552
C. N. R. Rao133164686718
Archana Sharma126116275902
Rama Chellappa120103162865
R. Graham Cooks11073647662
Angel Rubio11093052731
Prafulla Kumar Behera109120465248
J. Andrew McCammon10666955698
M. Santosh103134449846
Sandeep Kumar94156338652
Tom L. Blundell8668756613
R. Srikant8443226439
Zdenek P. Bazant8230120908
Raghavan Srinivasan8095937821
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023175
2022470
20212,943
20202,926
20192,942
20182,527