scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Madras

FacilityChennai, Tamil Nadu, India
About: Indian Institute of Technology Madras is a facility organization based out in Chennai, Tamil Nadu, India. It is known for research contribution in the topics: Catalysis & Heat transfer. The organization has 20118 authors who have published 36499 publications receiving 590447 citations.


Papers
More filters
Book
01 Dec 1999
TL;DR: This work focuses on Steady State Data Reconciliation for Bilinear Systems, which combines linear algebra, graph theory, and measurement Errors and Error Reduction techniques with a focus on Gross Error Detection.
Abstract: Introduction. Measurement Errors and Error Reduction Techniques. Steady State Data Reconciliation for Bilinear Systems. Nonlinear Steady State Data Reconciliation. Data Reconciliation in Dynamic Systems. Introduction to Gross Error Detection. Multiple Gross Error Identification Strategies for Steady State Processes. Gross Error Detection in Dynamic Processes. Design of Sensor Networks. Industrial Applications of Data Reconciliation and Gross Error Detection Technologies. Appendix A: Basic concepts of linear algebra. Appendix B: Basic concepts of Graph Theory. Appendix C: Statistical Hypotheses Testing.

294 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2333 moreInstitutions (195)
TL;DR: In this paper, the authors acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies:======BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,======And FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS======(Colombia); MSES and CSF (Croatia); RPF (
Abstract: we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

292 citations

Journal ArticleDOI
TL;DR: A monitoring program for particulate matter pollution was designed and implemented in six Asian cities/metropolitan regions including Bandung, Bangkok, Beijing, Chennai, Manila, and Hanoi, within the framework of the Asian regional air pollution research network (AIRPET), coordinated by the Asian Institute of Technology.

290 citations

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2294 moreInstitutions (194)
TL;DR: In this paper, the Higgs boson mass was measured in the H → ZZ → 4l (l = e, μ) decay channel and the signal strength modifiers for individual Higgs production modes were also measured.
Abstract: Properties of the Higgs boson are measured in the H → ZZ → 4l (l = e, μ) decay channel. A data sample of proton-proton collisions at $ \sqrt{s}=13 $ TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{−1}$ is used. The signal strength modifier μ, defined as the ratio of the observed Higgs boson rate in the H → ZZ → 4l decay channel to the standard model expectation, is measured to be μ = 1.05$_{− 0.17}^{+ 0.19}$ at m$_{H}$ = 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2. 92$_{− 0.44}^{+ 0.48}$ (stat)$_{− 0.24}^{+ 0.28}$ (syst)fb, which is compatible with the standard model prediction of 2.76 ± 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m$_{H}$ = 125.26 ± 0.21 GeV and the width is constrained using the on-shell invariant mass distribution to be Γ$_{H}$ < 1.10 GeV, at 95% confidence level.

290 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a roadmap for oxide-based electronics with a focus on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide based devices.
Abstract: Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on 'oxide electronic materials and oxide interfaces'. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action 'towards oxide-based electronics' which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements.

289 citations


Authors

Showing all 20385 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Xiaodong Wang1351573117552
C. N. R. Rao133164686718
Archana Sharma126116275902
Rama Chellappa120103162865
R. Graham Cooks11073647662
Angel Rubio11093052731
Prafulla Kumar Behera109120465248
J. Andrew McCammon10666955698
M. Santosh103134449846
Sandeep Kumar94156338652
Tom L. Blundell8668756613
R. Srikant8443226439
Zdenek P. Bazant8230120908
Raghavan Srinivasan8095937821
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023175
2022470
20212,943
20202,926
20192,942
20182,527