scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Madras

FacilityChennai, Tamil Nadu, India
About: Indian Institute of Technology Madras is a facility organization based out in Chennai, Tamil Nadu, India. It is known for research contribution in the topics: Catalysis & Heat transfer. The organization has 20118 authors who have published 36499 publications receiving 590447 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the properties of recycled aggregates derived from parent concrete (PC) of three strengths, each of them made with three maximum sizes of aggregates, were discussed.

496 citations

Journal ArticleDOI
A.E. Bondar1, A. Garmash1, R. Mizuk, D. Santel2  +154 moreInstitutions (46)
TL;DR: The observation of two narrow structures in the mass spectra of the π(±)Υ(nS) and π (±)h(b)(mP) pairs that are produced in association with a single charged pion in Υ(5S) decays is reported.
Abstract: We report the observation of two narrow structures in the mass spectra of the pi(+/-) Y(nS) (n = 1, 2, 3) and pi(+/-) h(b)(mP) (m = 1, 2) pairs that are produced in association with a single charged pion in Y(5S) decays The measured masses and widths of the two structures averaged over the five final states are M-1 = (10 6072 +/- 20) MeV/c(2), Gamma(1) =(184 +/- 24) MeV, and M-2 = (10 6522 +/- 15) MeV/c(2), Gamma(2) = (115 +/- 22) MeV The results are obtained with a 1214 fb(-1) data sample collected with the Belle detector in the vicinity of the Y(5S) resonance at the KEKB asymmetric-energy e(+)e(-) collider

492 citations

Journal ArticleDOI
TL;DR: This review article summarizes and highlights the existing literature covering every aspect of Mesoporous carbon nitrides including their templating synthesis, modification and functionalization, and potential applications of these MCN materials with an overview of the key and relevant results.
Abstract: Mesoporous carbon nitrides (MCNs) with large surface areas and uniform pore diameters are unique semiconducting materials and exhibit highly versatile structural and excellent physicochemical properties, which promote their application in diverse fields such as metal free catalysis, photocatalytic water splitting, energy storage and conversion, gas adsorption, separation, and even sensing. These fascinating MCN materials can be obtained through the polymerization of different aromatic and/or aliphatic carbons and high nitrogen containing molecular precursors via hard and/or soft templating approaches. One of the unique characteristics of these materials is that they exhibit both semiconducting and basic properties, which make them excellent platforms for the photoelectrochemical conversion and sensing of molecules such as CO2, and the selective sensing of toxic organic acids. The semiconducting features of these materials are finely controlled by varying the nitrogen content or local electronic structure of the MCNs. The incorporation of different functionalities including metal nanoparticles or organic molecules is further achieved in various ways to develop new electronic, semiconducting, catalytic, and energy harvesting materials. Dual functionalities including acidic and basic groups are also introduced in the wall structure of MCNs through simple UV-light irradiation, which offers enzyme-like properties in a single MCN system. In this review article, we summarize and highlight the existing literature covering every aspect of MCNs including their templating synthesis, modification and functionalization, and potential applications of these MCN materials with an overview of the key and relevant results. A special emphasis is given on the catalytic applications of MCNs including hydrogenation, oxidation, photocatalysis, and CO2 activation.

490 citations

Journal ArticleDOI
TL;DR: In this paper, a self map T defined on the union of two subsets A and B of a metric space and satisfying T ( A ) ⊆ B and T ( B )⊆ A is given some contraction type existence results for a best proximity point.

487 citations

Journal ArticleDOI
TL;DR: This work proposes a new coding method, classified vector quantization (CVQ), which is based on a composite source model and obtains better perceptual quality with significantly lower complexity with CVQ when compared to ordinary VQ.
Abstract: Vector quantization (VQ) provides many attractive features for image coding with high compression ratios. However, initial studies of image coding with VQ have revealed several difficulties, most notably edge degradation and high computational complexity. We address these two problems and propose a new coding method, classified vector quantization (CVQ), which is based on a composite source model. Blocks with distinct perceptual features, such as edges, are generated from different subsources, i.e., belong to different classes. In CVQ, a classifier determines the class for each block, and the block is then coded with a vector quantizer designed specifically for that class. We obtain better perceptual quality with significantly lower complexity with CVQ when compared to ordinary VQ. We demonstrate with CVQ visual quality which is comparable to that produced by existing coders of similar complexity, for rates in the range 0.6-1.0 bits/pixel.

485 citations


Authors

Showing all 20385 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Xiaodong Wang1351573117552
C. N. R. Rao133164686718
Archana Sharma126116275902
Rama Chellappa120103162865
R. Graham Cooks11073647662
Angel Rubio11093052731
Prafulla Kumar Behera109120465248
J. Andrew McCammon10666955698
M. Santosh103134449846
Sandeep Kumar94156338652
Tom L. Blundell8668756613
R. Srikant8443226439
Zdenek P. Bazant8230120908
Raghavan Srinivasan8095937821
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023175
2022470
20212,943
20202,926
20192,942
20182,527