scispace - formally typeset
Search or ask a question

Showing papers by "National Chemical Laboratory published in 2019"


Journal ArticleDOI
TL;DR: A closer look is taken at the growth of COFs from mere supramolecular structures to potential industrializable materials.
Abstract: Covalent organic frameworks (COFs) represent a new field of rapidly growing chemical research that takes direct inspiration from diverse covalent bonds existing between atoms. The success of linking atoms in two and three dimensions to construct extended framework structures moved the chemistry of COFs beyond the structures to methodologies, highlighting the possibility of prospective applications. Although structure to property relation in COFs has led to fascinating properties, chemical stability, processability and scalability were some of the important challenges that needed to be overcome for their successful implementation. In this Perspective, we take a closer look at the growth of COFs from mere supramolecular structures to potential industrializable materials.

702 citations


Journal ArticleDOI
TL;DR: The relationship between PLA material properties, manufacturing processes and development of products with desirable characteristics is described and their applications in the biomedical field are discussed.
Abstract: Social and economic development has driven considerable scientific and engineering efforts on the discovery, development and utilization of polymers. Polylactic acid (PLA) is one of the most promising biopolymers as it can be produced from nontoxic renewable feedstock. PLA has emerged as an important polymeric material for biomedical applications on account of its properties such as biocompatibility, biodegradability, mechanical strength and process ability. Lactic acid (LA) can be obtained by fermentation of sugars derived from renewable resources such as corn and sugarcane. PLA is thus an eco-friendly nontoxic polymer with features that permit use in the human body. Although PLA has a wide spectrum of applications, there are certain limitations such as slow degradation rate, hydrophobicity and low impact toughness associated with its use. Blending PLA with other polymers offers convenient options to improve associated properties or to generate novel PLA polymers/blends for target applications. A variety of PLA blends have been explored for various biomedical applications such as drug delivery, implants, sutures and tissue engineering. PLA and their copolymers are becoming widely used in tissue engineering for function restoration of impaired tissues due to their excellent biocompatibility and mechanical properties. The relationship between PLA material properties, manufacturing processes and development of products with desirable characteristics is described in this article. LA production, PLA synthesis and their applications in the biomedical field are also discussed.

382 citations


Journal ArticleDOI
TL;DR: A triazine and a keto functionalized nonmetal based covalent organic framework (TpTt) is synthesized for heterogeneous photocatalysis and applied for the photocatalytic uphill conversion of trans-stilbene to cis-stirring diodes with broad substrate scope via an energy transfer process.
Abstract: Visible light-mediated photocatalytic organic transformation has drawn significant attention as an alternative process for replacing thermal reactions. Although precious metal/organic dyes based homogeneous photocatalysts have been developed, their toxic and nonreusable nature makes them inappropriate for large-scale production. Therefore, we have synthesized a triazine and a keto functionalized nonmetal based covalent organic framework (TpTt) for heterogeneous photocatalysis. As the catalyst shows significant absorption of visible light, it has been applied for the photocatalytic uphill conversion of trans-stilbene to cis-stilbene in the presence of blue light-emitting diodes with broad substrate scope via an energy transfer process.

226 citations


Journal ArticleDOI
TL;DR: This Account is aimed at highlighting the recent developments in the N-heterocyclic carbene (NHC)-catalyzed generation of α,β-unsaturated acylazolium intermediates and their subsequent reactivity with (bis)nucleophiles thereby shedding light on the power of this NHC-bound intermediate in organocatalysis.
Abstract: ConspectusThis Account is aimed at highlighting the recent developments in the N-heterocyclic carbene (NHC)-catalyzed generation of α,β-unsaturated acylazolium intermediates and their subsequent reactivity with (bis)nucleophiles thereby shedding light on the power of this NHC-bound intermediate in organocatalysis. This key intermediate can be generated by the addition of NHCs to α,β-unsaturated aldehyde or acid derivatives. A wide variety of bisnucleophiles can add across the α,β-unsaturated acylazoliums to form various five and six-membered heterocycles and carbocycles. Moreover, suitably substituted nucleophiles can add to this intermediate and result in valuable products following cascade processes. Employing chiral NHCs in the process can result in the enantioselective synthesis of valuable compounds.In 2013, we developed a unified strategy for the enantioselective synthesis of dihydropyranones and dihydropyridinones by the NHC-catalyzed formal [3 + 3] annulation of 2-bromoenals with readily available...

217 citations


Journal ArticleDOI
TL;DR: These freestanding borophene materials and their hybrids will create a huge breakthrough in the field of 2D materials and could help to develop future generations of devices and emerging applications.
Abstract: Borophene, an elemental metallic Dirac material is predicted to have unprecedented mechanical and electronic character. Need of substrate and ultrahigh vacuum conditions for deposition of borophene restricts its large-scale applications and significantly hampers the advancement of research on borophene. Herein, a facile and large-scale synthesis of freestanding atomic sheets of borophene through a novel liquid-phase exfoliation and the reduction of borophene oxide is demonstrated. Electron microscopy confirms the presence of β12 , X3 , and their intermediate phases of borophene; X-ray photoelectron spectroscopy, and scanning tunneling microscopy, corroborated with density functional theory band structure calculations, validate the phase purity and the metallic nature. Borophene with excellent anchoring capabilities is used for sensing of light, gas, molecules, and strain. Hybrids of borophene as well as that of reduced borophene oxide with other 2D materials are synthesized, and the predicted superior performance in energy storage is explored. The specific capacity of borophene oxide is observed to be ≈4941 mAh g-1 , which significantly exceeds that of existing 2D materials and their hybrids. These freestanding borophene materials and their hybrids will create a huge breakthrough in the field of 2D materials and could help to develop future generations of devices and emerging applications.

182 citations


Journal ArticleDOI
TL;DR: The results clearly demonstrate that the staggered band structure between FeWO4 and C3N4 reflecting the nature-inspired Z-scheme system not only favors superior spatial separation of the electron-hole pair in g-C3N 4/FeWO 4 but also shows good reusability.
Abstract: Photocatalytic reduction of CO2 to renewable solar fuels is considered to be a promising strategy to simultaneously solve both global warming and energy crises. However, development of a superior p...

173 citations


Journal ArticleDOI
TL;DR: A hydroquinone stitched β-ketoenamine COF acting as an efficient organic cathode in an aqueous rechargeable zinc ion battery is demonstrated.
Abstract: The two-dimensional structural features of covalent organic frameworks (COFs) can promote the electrochemical storage of cations like H+, Li+, and Na+ through both faradaic and non-faradaic processes. However, the electrochemical storage of cations like Zn2+ ion is still unexplored although it bears a promising divalent charge. Herein, for the first time, we have utilized hydroquinone linked β-ketoenamine COF acting as a Zn2+ anchor in an aqueous rechargeable zinc ion battery. The charge-storage mechanism comprises of an efficient reversible interlayer interaction of Zn2+ ions with the functional moieties in the adjacent layers of COF (−182.0 kcal mol−1). Notably, due to the well-defined nanopores and structural organization, a constructed full cell, displays a discharge capacity as high as 276 mA h g−1 at a current rate of 125 mA g−1.

163 citations


Journal ArticleDOI
TL;DR: The induction of ordered micropores within the disordered 3D architecture synergistically renders fast diffusion of various guests through the interconnected pore network, which would lead to significant environmental benefit.
Abstract: The key factor responsible for fast diffusion and mass transfer through a porous material is the availability of a widely open pore interior having complete accessibility from their surface. However, because of their highly stacked nature, ordered two-dimensional (2D) materials fail to find real-world applicability, as it is difficult to take advantage of their complete structure, especially the inner cores. In this regard, three-dimensional (3D) nanostructures constructed from layered two-dimensional crystallites could prove to be advantageous. However, the real challenge is to cultivate a porous nanostructure with ordered pores where the pores are surrounded by crystalline walls. Herein, a simple yet versatile in situ gas-phase foaming technique has been employed to address these cardinal issues. The use of baking soda leads to the continuous effervescence of CO2 during the crystallization of foam, which creates ripples and fluctuations on the surface of the 2D crystallites. The induction of ordered micropores within the disordered 3D architecture synergistically renders fast diffusion of various guests through the interconnected pore network. The high-density defects in the hierarchically porous structure help in ultrafast adsorption (<10 s) of various pollutants (removal efficiency of 99%) from water, all of which would lead to significant environmental benefit. The pseudo-second-order rate constant for the BPA pollutant is 182.3 g mg-1 min-1, which is the highest among all the literature reports to date. The high removal efficiency (highest efficiency of 94% and average efficiency of 70%) of a persistent organic pollutant has been attended for the first time.

152 citations


Journal ArticleDOI
TL;DR: Five areas which come under the umbrella of Crystal Engineering are outlined and where a proper planning of research efforts could lead to higher dividends for science together with greater returns for humankind.
Abstract: Crystal Engineering has traditionally dealt with molecular crystals. It is the understanding of intermolecular interactions in the context of crystal packing and in the utilization of such understanding in the design of new solids with desired physical and chemical properties. We outline here five areas which come under the umbrella of Crystal Engineering and where we feel that a proper planning of research efforts could lead to higher dividends for science together with greater returns for humankind. We touch on themes and domains where science funding and translation efforts could be directed in the current climate of a society that increasingly expects applications and utility products from science and technology. The five topics are: 1) pharmaceutical solids; 2) industrial solid state reactions; 3) mechanical properties with practical applications; 4) MOFs and COFs framework solids; 5) new materials for solar energy harvesting and advanced polymers. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

146 citations


Journal ArticleDOI
TL;DR: Among all prepared particles, ZnO nanoparticles with least size exhibited remarkable antibacterial and antibiofilm activity which may serve as potential alternatives in biomedical application.
Abstract: The present investigation deals with facile polyol mediated synthesis and characterization of ZnO nanoparticles and their antimicrobial activities against pathogenic microorganisms. The synthesis process was carried out by refluxing zinc acetate precursor in diethylene glycol(DEG) and triethylene glycol(TEG) in the presence and in the absence of sodium acetate for 2 h and 3 h. All synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD), UV visible spectroscopy (UV), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy(FESEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) technique. All nanoparticles showed different degree of antibacterial and antibiofilm activity against Gram-positive Staphylococcus aureus (NCIM 2654)and Gram-negative Proteus vulgaris (NCIM 2613). The antibacterial and antibiofilm activity was inversely proportional to the size of the synthesized ZnO nanoparticles. Among all prepared particles, ZnO nanoparticles with least size (~ 15 nm) prepared by refluxing zinc acetate dihydrate in diethylene glycol for 3 h exhibited remarkable antibacterial and antibiofilm activity which may serve as potential alternatives in biomedical application.

146 citations


Journal ArticleDOI
TL;DR: This work proposes a unique way to make uniform, solution-processable crystalline, and porous COF nanospheres directly from the homogeneous solution of amine and aldehyde via spatial and temporal control of the nu-cleation and growth.
Abstract: Insolubility of covalent organic frameworks (COFs) in organic solvents is one of the major obstacles for the potential application of these extended networks such as drug delivery, sensing, optoelectronics, and semiconductor device fabrication. The present work proposes a unique way to make uniform, solution-processable, crystalline, and porous COF nanospheres directly from the homogeneous solution of amine and aldehyde via spatial and temporal control of the nucleation and growth. This strategy of direct nucleation simultaneously showcases the caliber to tune the size of the COF nanospheres from 25 to 570 nm. We have also demonstrated the concept of mesoscale covalent self-assembly of those solution-processable COF nanospheres in the liquid-liquid interface (DCM-water bilayer) for the very first time, transmuting them into self-standing COF thin films with long-range ordered arrangements in two dimensions. The crystalline and porous (with TpAzo showing highest SBET of 1932 m2 g-1) free-standing COF thin films could be fabricated in a wide range of thicknesses from as low as 21 nm to as high as 630 nm. Both β-ketoenamine (TpAzo, TpDPP) and imine (TpOMeAzo, TpOMeDPP) linked COF thin films have been synthesized via mesoscale covalent self-assembly of the solution-processable COF nanospheres illustrating the generality of this eloquent methodology. Further, the solution processability has been tested and utilized to cast COF thin films uniformly in the inner and outer surface of an alumina hollow fiber membrane. The COF thin film-alumina hollow fiber membrane composites have showcased promising selective molecular separation of He and O2, He and CO2, and He and N2.

Journal ArticleDOI
TL;DR: A crystalline 2D-polymer comprised of benzimidazole units as the integral part, prepared by the condensation of aryl acid and diamine in polyphosphoric acid medium that exhibits ultrahigh proton conductivity, which is highest among the undoped porous organic frameworks so far reported.
Abstract: Proton-exchange membrane fuel cells are promising energy devices for a sustainable future due to green features, high power density, and mild operating conditions. A facile proton-conducting membrane plays a pivotal role to boost the efficiency of fuel cells, and hence focused research in this area is highly desirable. Major issues associated with the successful example of Nafion resulted in the search for alternate proton conducting materials. Even though proton carrier loaded crystalline porous organic frameworks have been used for proton-conduction, the weak host-guest interactions limited their practical use. Herein, we developed a crystalline 2D-polymer composed of benzimidazole units as the integral part, prepared by the condensation of aryl acid and diamine in polyphosphoric acid medium. The imidazole linked-2D-polymer exhibits ultrahigh proton conductivity (3.2 × 10-2 S cm-1) (at 95% relative humidity and 95 °C) in the pristine state, which is highest among the undoped porous organic frameworks so far reported. The present strategy of a crystalline proton-conducting 2D-polymer will lead to the development of new high performing crystalline solid proton conductor.

Journal ArticleDOI
TL;DR: An overview of the challenges that are faced by the processes converting LCB to commodity chemicals with special reference to biofuels is provided.
Abstract: Lignocellulosic biomass (LCB) is globally available and sustainable feedstock containing sugar-rich platform that can be converted to biofuels and specialty products through appropriate processing. This review focuses on the efforts required for the development of sustainable and economically viable lignocellulosic biorefinery to produce carbon neutral biofuels along with the specialty chemicals. Sustainable biomass processing is a global challenge that requires the fulfillment of fundamental demands concerning economic efficiency, environmental compatibility, and social responsibility. The key technical challenges in continuous biomass supply and the biological routes for its saccharification with high yields of sugar sources have not been addressed in research programs dealing with biomass processing. Though many R&D endeavors have directed towards biomass valorization over several decades, the integrated production of biofuels and chemicals still needs optimization from both technical and economical perspectives. None of the current pretreatment methods has advantages over others since their outcomes depend on the type of feedstock, downstream process configuration, and many other factors. Consolidated bio-processing (CBP) involves the use of single or consortium of microbes to deconstruct biomass without pretreatment. The use of new genetic engineering tools for natively cellulolytic microbes would make the CBP process low cost and ecologically friendly. Issues arising with chemical characteristics and rigidity of the biomass structure can be a setback for its viability for biofuel conversion. Integration of functional genomics and system biology with synthetic biology and metabolic engineering undoubtedly led to generation of efficient microbial systems, albeit with limited commercial potential. These efficient microbial systems with new metabolic routes can be exploited for production of commodity chemicals from all the three components of biomass. This paper provides an overview of the challenges that are faced by the processes converting LCB to commodity chemicals with special reference to biofuels.

Journal ArticleDOI
TL;DR: This review aims to provide a comprehensive overview of the processes and techniques using supercritical fluid processing based on the supercritical properties, the role of supercritical carbon dioxide during the process, and the mechanism of formulation production for each process discussed.
Abstract: The unique properties of supercritical fluids, in particular supercritical carbon dioxide (CO2), provide numerous opportunities for the development of processes for pharmaceutical applications. One of the potential applications for pharmaceuticals includes microencapsulation and nanoencapsulation for drug delivery purposes. Supercritical CO2 processes allow the design and control of particle size, as well as drug loading by utilizing the tunable properties of supercritical CO2 at different operating conditions (flow ratio, temperature, pressures, etc.). This review aims to provide a comprehensive overview of the processes and techniques using supercritical fluid processing based on the supercritical properties, the role of supercritical carbon dioxide during the process, and the mechanism of formulation production for each process discussed. The considerations for equipment configurations to achieve the various processes described and the mechanisms behind the representative processes such as RESS (rapid expansion of supercritical solutions), SAS (supercritical antisolvent), SFEE (supercritical fluid extraction of emulsions), PGSS (particles from gas-saturated solutions), drying, and polymer foaming will be explained via schematic representation. More recent developments such as fluidized bed coating using supercritical CO2 as the fluidizing and drying medium, the supercritical CO2 spray drying of aqueous solutions, as well as the production of microporous drug releasing devices via foaming, will be highlighted in this review. Development and strategies to control and optimize the particle morphology, drug loading, and yield from the major processes will also be discussed.

Journal ArticleDOI
29 Jul 2019
TL;DR: The current work presents unprecedented strategy to design anti-Tau aggregation drugs, which provides interesting insights to understand the role of biological nanostructures in Alzheimer’s disease.
Abstract: The Alzheimer's disease (AD) therapeutic research is yielding a large number of potent molecules. The nanoparticle-based therapeutics against the protein aggregation in AD is also taking a lead especially with amyloid-β as a primary target. In this work, we have screened for the first time protein-capped (PC) metal nanoparticles for their potency in inhibiting Tau aggregation in vitro. We present a novel function of PC-Fe3O4 and PC-CdS nanoparticles as potent Tau aggregation inhibitors by fluorescence spectrometry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and electron microscopy. We demonstrate that the biologically synthesized PC-metal nanoparticles, especially iron oxide do not affect the viability of neuroblastoma cells. Moreover, PC-CdS nanoparticles show dual properties of inhibition and disaggregation of Tau. Thus, the nanoparticles can take a lead as potent Tau aggregation inhibitors and can be modified for specific drug delivery due to their very small size. The current work presents unprecedented strategy to design anti-Tau aggregation drugs, which provides interesting insights to understand the role of biological nanostructures in Alzheimer's disease.

Journal ArticleDOI
TL;DR: Overall, this study has shown that hot spring microbes may have a potential for PAHs degradation and also biosurfactant production at a higher temperature, which could provide a novel perspective for removal ofPAHs residues from oil contaminated sites.

Journal ArticleDOI
TL;DR: In this paper, a mesoporous and highly crystalline 2D zinc oxide nanosheets (MZNS) is proposed for next-generation humidity sensors and photodetectors.
Abstract: Miniaturized sensor technology is vastly demanding multifunctional materials to fulfill many requirements simultaneously; instead of integrating various sensors into a single device. Efficient operation of these miniaturized sensors at room temperature is highly feasible and cost-effective. The humidity sensing and photodetection is precise merit of sensing in special usage like artificial skin. Sensitivity enhancement in both humidity and photodetection required the high surface area for adsorption as well as a high charge transfer mechanism. The two dimensional (2D) zinc oxide nanosheets (ZnO NS) is the ultimate structure for dimensionally confined transport properties owing to the specific surface atomic configuration that results in high sensitivity, low operating temperature, fast response and recovery, and improved selectivity. Furthermore, introducing porosity into 2D nanostructures has opened new opportunities to enhance the efficiency of sensors and detectors via increasing large surface area and tunable physical and chemical properties. Here we report preparation of mesoporous and highly crystalline 2D ZnO NS by a single step, template free, cost-effective chemical method. The structural and morphological characterizations of ZnO NS are carried out using XRD, FESEM, XPS, TEM respectively. The high-resolution TEM images emphasize sheet-like morphology with a thickness of around 18–22 nm. Further the mesoporous ZnO NS (MZNS) with the pore size between 5–10 nm are achieved by simple heat-treatment. XPS and PL study is confirming the oxygen deficiency in MZNS. The MZNS exhibits an excellent responsivity than PZNS with a fast response and rapid recovery time of 25 s and 5 s respectively along with good cyclic stability which is highly crucial for smart humidity sensor. Furthermore, it considerably enhances photo-sensor performance than pristine ZnO NS (PZNS) with ˜1 s response time as well as ˜1 s recovery time along with better stability. These promising results illustrate the great potential of MZNS for next-generation humidity sensors and photodetectors.

Journal ArticleDOI
TL;DR: In this article, the authors report the development of CuCo2S4 nanosheets (NSs) as a promising semiconductor photocatalyst for the first time for water splitting reactions under visible light (λ ≥ 420 nm) conditions, without the support of any noble metal co-catalyst.
Abstract: Here we report the development of CuCo2S4 nanosheets (NSs) as a promising semiconductor photocatalyst for the first time for water splitting reactions under visible light (λ ≥ 420 nm) conditions, without the support of any noble metal co-catalyst. These NSs were produced via a simple hydrothermal route and have desirable properties with a band gap of 2.24 eV, and are photo-catalytically active under visible light with an apparent quantum yield (AQY) of 2.48%. Under visible light, CuCo2S4 NSs exhibit excellent weight-normalized photoactivity that generates ∼25 900 μmol h−1 H2 for 1 g of material with sulphide + sulphite as the sacrificial agent under 7.68 mW cm−2 illumination, which is the best evolution reported for any chalcogenide semiconductor material without any co-catalyst to date with unprecedented long-term operational stability (up to 12 h study time). The rate and number of hydrogen gas molecules produced are 8.2855 × 1015 s−1 cm−2 which remained constant for three catalytic cycles with a turnover frequency (TOF) value of 0.017 s−1. The effect of Cu substitution on photoactivity was also investigated for comparative studies and it was found that CuCo2S4 NSs show superior activity to Cu0.5Co2.5S4 and Co3S4. These CuCo2S4 NSs absorb the entire visible range of the spectrum from 420 to 800 nm, and have a highly populated density of states at the Fermi level and a high donor concentration of 7.22 × 1018 cm−3 which have been evaluated by Mott–Schottky analysis and favourable adsorption of H+ on S-sites and conversion to H2 corroborate their efficient photocatalytic activity.

Journal ArticleDOI
TL;DR: The first example of ancillary (P,N)-ligand-enabled gold-catalyzed C-N cross-coupling reactions of aryl iodides with amines is reported, providing strong evidence for the in situ formation of putative high valent Au(III) intermediates.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new method for the detection of the presence of cancer in the human body using Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, Karnataka-560012, India.
Abstract: ║Department of Chemistry, Indian Institute of Science Education and Research, Tirupati, Karakambadi Rd, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh 517507. †Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Dr. Homi Bhabha Road, Pashan Pune, Maharashtra-411008, India. §Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India ‡Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra-411007, India. ҂Department of Inorganic and Physical Chemistry, Indian Institute of Science, CV Raman Rd, Bengaluru, Karnataka-560012, India.

Journal ArticleDOI
TL;DR: A cavitation model using per pass disinfection was developed that can provide meaningful physical description of the disinfection process as against the conventional first order reaction rate model and provide meaningful insight into cavitation process based on hydrodynamic cavitation for the destruction of both gram-negative and gram-positive bacteria from various water sources, including industrial wastewaters.


Journal ArticleDOI
TL;DR: In this article, a nano-composite composite membrane composed of sulfonated poly (ether ether ketone) (SPEEK) cross-linked and reinforced with cellulose nanocrystals (CNCs) is presented.

Journal ArticleDOI
TL;DR: In this paper, a promising supercapacitor electrode material (WO3-rGO hybrids) synthesized via a simplistic one-pot hydrothermal synthesis route was explored.
Abstract: This work explored a promising supercapacitor electrode material (WO3-rGO hybrids) synthesized via a simplistic one-pot hydrothermal synthesis route. Various analytical studies (X-ray diffraction s...

Journal ArticleDOI
TL;DR: The change in functionality of microglia from innate to adaptive immune response in the context of neuroprotection, which may help in the search of novel immune therapy in AD is focused on.
Abstract: The prominent pathological consequences of Alzheimer's disease (AD) are the misfolding and mis-sorting of two cellular proteins, amyloid-β and microtubule-associated protein Tau. The accumulation of toxic phosphorylated Tau inside the neurons induces the increased processing of amyloid-β-associated signaling cascade and vice versa. Neuroinflammation-driven synaptic depletion and cognitive decline are substantiated by the cross talk of activated microglia and astroglia, leading to neuron degeneration. Microglia are the brain-resident immune effectors that prove their diverse functions in maintaining CNS homeostasis via collaboration with astrocytes and T lymphocytes. Age-related senescence and chronic inflammation activate microglia with increased pro-inflammatory markers, oxidative damage and phagocytosis. But the improper processing of misfolded protein via lysosomal pathway destines the spreading of 'seed' constituents to the nearby healthy neurons. Primed microglia process and present self-antigen such as amyloid-β and modified Tau to the infiltrated T lymphocytes through MHC I/II molecules. After an effective conversation with CD4+ T cells, microglial phenotype can be altered from pro-active M1 to neuro-protective M2 type, which corresponds to the tissue remodeling and homeostasis. In this review, we are focusing on the change in functionality of microglia from innate to adaptive immune response in the context of neuroprotection, which may help in the search of novel immune therapy in AD.

Journal ArticleDOI
TL;DR: It was found that different steps contributed significantly, as shown by the various environmental indicator values, and variations in the contribution to environmental indicators should be considered during the design and process selection of biorefineries.
Abstract: Fruit peels are a rich source of cellulose, hemicellulose, phenolic compounds, and terpenic compounds. Thus, they have the potential to be a novel renewable, sustainable, and low-cost raw material (source) for the production of several value-added products based on framework and concepts such as waste hierarchy that includes biofertilizers, dietary fiber, animal feed, industrial enzymes, substrate for the bioactive compounds production, synthesis of nanomaterials, and clean energy (from residual biomass). With a view of evaluating the environmental burden of biorefinery, a life cycle assessment (LCA) is performed for a representative citrus waste (CW) biorefinery. The functional unit used for LCA was set as 2500 kg of CW processed. The overall GWP was observed to be 937.3 kg CO2 equivalent per 2500 kg of CW processed. On further analysis of the environmental impact, it was found that different steps contributed significantly, as shown by the various environmental indicator values. Alternative advanced process intensification technologies like microwave and ultrasound-assisted steps replacing the conventional steps when implemented show considerable reduction in environmental indicator values. The variations in the contribution to environmental indicators should be considered during the design and process selection of biorefineries.

Journal ArticleDOI
TL;DR: The results from the AINR approach show that aqueous HCN could indeed have been the source of RNA and protein precursors, but they also indicate that just the interaction of HCN with water would have sufficed to begin a series of reactions leading to the precursor.
Abstract: The seminal Urey-Miller experiments showed that molecules crucial to life such as HCN could have formed in the reducing atmosphere of the Hadean Earth and then dissolved in the oceans. Subsequent proponents of the "RNA World" hypothesis have shown aqueous HCN to be the starting point for the formation of the precursors of RNA and proteins. However, the conditions of early Earth suggest that aqueous HCN would have had to react under a significant number of constraints. Therefore, given the limiting conditions, could RNA and protein precursors still have formed from aqueous HCN? If so, what mechanistic routes would have been followed? The current computational study, with the aid of the ab initio nanoreactor (AINR), a powerful new tool in computational chemistry, addresses these crucial questions. Gratifyingly, not only do the results from the AINR approach show that aqueous HCN could indeed have been the source of RNA and protein precursors, but they also indicate that just the interaction of HCN with water would have sufficed to begin a series of reactions leading to the precursors. The current work therefore provides important missing links in the story of prebiotic chemistry and charts the road from aqueous HCN to the precursors of RNA and proteins.

Journal ArticleDOI
TL;DR: In this paper, the synthesis of molybdenum diselenide (MoSe2) nanoflowers by facile hydrothermal method for photo- and humidity sensor applications is reported.
Abstract: In the present investigation, we report the synthesis of molybdenum diselenide (MoSe2) nanoflowers by facile hydrothermal method for photo- and humidity sensor applications. The obtained samples were characterized thoroughly by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD spectrum shows crystalline nature of the sample. Raman spectroscopy shows two prominent vibration modes of E2 g1 and A1g at ˜ 241 and ˜ 283 cm−1 respectively. The crystalline nature of the sample confirmed with the TEM. The MoSe2 nanoflowers based sensor shows high photosensitivity and good response to humidity with excellent prolong stability. The maximum photoresponsitivity of ˜ 194% along with response of ˜ 40 ms and recovery time of ˜ 48 ms were observed for the sample. In case of humidity sensor, response time of ˜ 53 s and recovery time of ˜ 13 s with maximum sensitivity -74% were observed under humidity environments. It suggests that, MoSe2 nanoflowers appear as a potential candidate for constructing high-performance nanoelectronics devices.

Journal ArticleDOI
TL;DR: Product selectivity in aqueous phase phenol hydrogenation on well-defined supported Pd nanostructures (spheres, cubes, and octahedra) was studied using defined experiments and density functional properties as discussed by the authors.
Abstract: Product selectivity in aqueous phase phenol hydrogenation on well-defined supported Pd nanostructures (spheres, cubes, and octahedra) was studied using defined experiments and density functional th...

Journal ArticleDOI
TL;DR: Large amount of hydrogen evolution in film form with both catalysts (Au-Pd/C/TiO2 and Au-PD/rGO/ TiO2) reiterates that charge utilization should be better compared to powder catalysts.
Abstract: In the present work, we have synthesized noble bimetallic nanoparticles (Au-Pd NPs) on a carbon-based support and integrated with titania to obtain Au-Pd/C/TiO2 and Au-Pd/rGO/TiO2 nanocomposites using an ecofriendly hydrothermal method. Here, a 1:1 (w/w) Au-Pd bimetallic composition was dispersed on (a) high-surface-area (3000 m2 g-1) activated carbon (Au-Pd/C), prepared from a locally available plant source (in Assam, India), and (b) reduced graphene oxide (rGO) (Au-Pd/rGO); subsequently, they were integrated with TiO2. The shift observed in Raman spectroscopy demonstrates the electronic integration of the bimetal with titania. The photocatalytic activity of the above materials for the hydrogen evolution reaction was studied under 1 sun conditions using methanol as a sacrificial agent in a powder form. The photocatalysts were also employed to prepare a thin film by the drop-casting method. Au-Pd/rGO/TiO2 exhibits 43 times higher hydrogen (H2) yield in the thin film form (21.50 mmol h-1 g-1) compared to the powder form (0.50 mmol h-1 g-1). On the other hand, Au-Pd/C/TiO2 shows 13 times higher hydrogen (H2) yield in the thin film form (6.42 mmol h-1 g-1) compared to the powder form (0.48 mmol h-1 g-1). While powder forms of both catalysts show comparable activity, the Au-Pd/rGO/TiO2 thin film shows 3.4 times higher activity than that of Au-Pd/C/TiO2. This can be ascribed to (a) an effective separation of photogenerated electron-hole pairs at the interface of Au-Pd/rGO/TiO2 and (b) the better field effect due to plasmon resonance of the bimetal in the thin film form. The catalytic influence of the carbon-based support is highly pronounced due to synergistic binding interaction of bimetallic nanoparticles. Further, a large amount of hydrogen evolution in the film form with both catalysts (Au-Pd/C/TiO2 and Au-Pd/rGO/TiO2) reiterates that charge utilization should be better compared to that in powder catalysts.