scispace - formally typeset
Search or ask a question

Showing papers in "ACS Applied Materials & Interfaces in 2019"


Journal ArticleDOI
TL;DR: Comparison experiment reveals that the good impedance matching derived from the multiple porous structures, internal reflection, and polarization effect plays a synergistic role in the improved absorption efficiency and superior EMI shielding performance.
Abstract: Lightweight absorption-dominated electromagnetic interference (EMI) shielding materials are more attractive than conventional reflection-dominated counterparts because they minimize the twice pollution of the reflected electromagnetic (EM) wave. Here, porous Ti2CT x MXene/poly(vinyl alcohol) composite foams constructed by few-layered Ti2CT x (f-Ti2CT x) MXene and poly(vinyl alcohol) (PVA) are fabricated via a facile freeze-drying method. As superior EMI shielding materials, their calculated specific shielding effectiveness reaches up to 5136 dB cm2 g-1 with an ultralow filler content of only 0.15 vol % and reflection effectiveness (SER) of less than 2 dB, representing the excellent absorption-dominated shielding performance. Contrast experiment reveals that the good impedance matching derived from the multiple porous structures, internal reflection, and polarization effect (dipole and interfacial polarization) plays a synergistic role in the improved absorption efficiency and superior EMI shielding performance. Consequently, this work provides a promising MXene-based EMI shielding candidate with lightweight and high strength features.

407 citations


Journal ArticleDOI
Chaolang Chen1, Ding Weng1, Awais Mahmood1, Shuai Chen1, Jiadao Wang1 
TL;DR: This paper systematically summarize the fundamental theories, separation mechanism, design strategies, and recent developments in materials with special wettability for separating stratified and emulsified oil/water mixtures.
Abstract: Oil leakage and the discharge of oil/water mixtures by domestic and industrial consumers have caused not only severe environmental pollution and a threat to all species in the ecosystem but also a huge waste of precious resources. Therefore, the separation of oil/water mixtures, especially stable emulsion, has become an urgent global issue. Recently, materials containing a special wettability feature for oil and water have drawn immense attention because of their potential applications for oil/water separation application. In this paper, we systematically summarize the fundamental theories, separation mechanism, design strategies, and recent developments in materials with special wettability for separating stratified and emulsified oil/water mixtures. The related wetting theories that unveil the physical underlying mechanism of the oil/water separation mechanism are proposed, and the practical design criteria for oil/water separation materials are provided. Guided by the fundamental design criteria, various porous materials with special wettability characteristics, including those which are superhydrophilic/underwater superoleophobic, superhydrophobic/superoleophilic, and superhydrophilic/in-air superoleophobic, are systemically analyzed. These superwetting materials are widely employed to separate oil/water mixtures: from stratified oil/water to emulsified ones. In addition, the materials that implement the demulsification of emulsified oil/water mixtures via the ingenious design of the multiscale surface morphology and construction of special wettability are also discussed. In each section, we introduce the design ideas, base materials, preparation methods, and representative works in detail. Finally, the conclusions and challenges for the oil/water separation research field are discussed in depth.

385 citations


Journal ArticleDOI
TL;DR: It is shown that the contact geometry in combination with the ionic transport in the solid electrolyte dominates the interfacial contributions for a clean interface in equilibrium, and this is the smallest reported interfacial resistance in the literature without the need for any interlayer.
Abstract: For the development of next-generation lithium batteries, major research effort is made to enable a reversible lithium metal anode by the use of solid electrolytes. However, the fundamentals of the solid-solid interface and especially the processes that take place under current load are still not well characterized. By measuring pressure-dependent electrode kinetics, we explore the electrochemo-mechanical behavior of the lithium metal anode on the garnet electrolyte Li6.25Al0.25La3Zr2O12. Because of the stability against reduction in contact with the lithium metal, this serves as an optimal model system for kinetic studies without electrolyte degradation. We show that the interfacial resistance becomes negligibly small and converges to practically 0 Ω·cm2 at high external pressures of several 100 MPa. To the best of our knowledge, this is the smallest reported interfacial resistance in the literature without the need for any interlayer. We interpret this observation by the concept of constriction resistance and show that the contact geometry in combination with the ionic transport in the solid electrolyte dominates the interfacial contributions for a clean interface in equilibrium. Furthermore, we show that-under anodic operating conditions-the vacancy diffusion limitation in the lithium metal restricts the rate capability of the lithium metal anode because of contact loss caused by vacancy accumulation and the resulting pore formation near the interface. Results of a kinetic model show that the interface remains morphologically stable only when the anodic load does not exceed a critical value of approximately 100 μA·cm-2, which is not high enough for practical cell setups employing a planar geometry. We highlight that future research on lithium metal anodes on solid electrolytes needs to focus on the transport within and the morphological instability of the metal electrode. Overall, the results help to develop a deeper understanding of the lithium metal anode on solid electrolytes, and the major conclusions are not limited to the Li|Li6.25Al0.25La3Zr2O12 interface.

368 citations


Journal ArticleDOI
TL;DR: The presented nanocomposite hydrogels displayed good electrical conductivity, rapid self-healing and adhesive properties, flexible and stretchable mechanical properties, and high sensitivity to near-infrared light and temperature.
Abstract: Self-healing, adhesive conductive hydrogels are of great significance in wearable electronic devices, flexible printable electronics, and tissue engineering scaffolds. However, designing self-healing hydrogels with multifunctional properties such as high conductivity, excellent mechanical property, and high sensitivity remains a challenge. In this work, the conductive self-healing nanocomposite hydrogels based on nanoclay (laponite), multiwalled carbon nanotubes (CNTs), and N-isopropyl acrylamide are presented. The presented nanocomposite hydrogels displayed good electrical conductivity, rapid self-healing and adhesive properties, flexible and stretchable mechanical properties, and high sensitivity to near-infrared light and temperature. These excellent properties of the hydrogels are demonstrated by the three-dimensional (3D) bulky pressure-dependent device, human activity monitoring device, and 3D printed gridding scaffolds. Good cytocompatibility of the conductive hydrogels was also evaluated with L929...

345 citations


Journal ArticleDOI
TL;DR: This study demonstrates that the codoped strategy provides a new way for the rational design of carbon-based absorbers with lightweight and superior microwave attenuation.
Abstract: Lightweight and high-efficiency microwave attenuation are two major challenges in the exploration of carbon-based absorbers, which can be achieved simultaneously by manipulating their chemical composition, microstructure, or impedance matching. In this work, core-shell CoNi@graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons has been constructed by a facile pyrolysis process using metal-organic frameworks as precursors. The B,N-codoped hollow carbon polyhedrons, originated from the calcination of Co-Ni-ZIF-67, are composed of carbon nanocages and BN domains, and CoNi alloy is encapsulated by graphitic carbon layers. With a filling loading of 30 wt %, the absorber exhibits a maximum RL of -62.8 dB at 7.2 GHz with 3 mm and the effective absorption bandwidth below -10 dB remarkably reaches as strong as 8 GHz when the thickness is only 2 mm. The outstanding microwave absorption performance stems from the hollow carbon polyhedrons and carbon nanocages with interior cavities, the synergistic coupling effect between the abundant B-C-N heteroatoms, the strong dipolar/interfacial polarizations, the multiple scatterings, and the improved impedance matching. This study demonstrates that the codoped strategy provides a new way for the rational design of carbon-based absorbers with lightweight and superior microwave attenuation.

334 citations


Journal ArticleDOI
TL;DR: The conductive CA@PU sponge acquired through a simple dip-coating process followed by precompression treatment exhibited great potential for the fabrication of artificial electronic skin and will undoubtedly promote the development of high-performance flexible wearable electronics.
Abstract: With the rapid development of flexible wearable electronics, a piezoresistive sensor with low detection limit and wide strain sensing range turns out to be a great challenge for its application in this field. Here, a cracked cellulose nanofibril/silver nanowire (CA) layer-coated polyurethane (PU) sponge was acquired through a simple dip-coating process followed by precompression treatment. The electrical conductivity and mechanical property of the conductive CA@PU sponge could be effectively tuned through changing the dip-coating number. As a piezoresistive sensor, the sponge exhibited the capability of detecting both small and large motions over a wide compression strain range of 0–80%. Based on the “crack effect”, the sensor possessed a detection limit as low as 0.2% and the gauge factor [GF, GF = (ΔR/R0)/e, where ΔR, R0, and e represent the instantaneous resistance change, original resistance, and strain applied, respectively] was as high as 26.07 in the strain range of 0–0.6%. Moreover, the “contact e...

312 citations


Journal ArticleDOI
TL;DR: An ultrahigh sensitive capacitive pressure sensor based on a porous pyramid dielectric layer (PPDL) is reported, which was drastically increased to 44.5 kPa-1 in the pressure range <100 Pa, an unprecedented sensitivity for capacitivepressure sensors.
Abstract: An ultrahigh sensitive capacitive pressure sensor based on a porous pyramid dielectric layer (PPDL) is reported. Compared to that of the conventional pyramid dielectric layer, the sensitivity was drastically increased to 44.5 kPa-1 in the pressure range <100 Pa, an unprecedented sensitivity for capacitive pressure sensors. The enhanced sensitivity is attributed to a lower compressive modulus and larger change in an effective dielectric constant under pressure. By placing the pressure sensors on islands of hard elastomer embedded in a soft elastomer substrate, the sensors exhibited insensitivity to strain. The pressure sensors were also nonresponsive to temperature. Finally, a contact resistance-based pressure sensor is also demonstrated by chemically grafting PPDL with a conductive polymer, which also showed drastically enhanced sensitivity.

305 citations


Journal ArticleDOI
TL;DR: Fibrous membranes not only show highly efficient air-filtration performance but also show superior photocatalytic activity and antibacterial activity, and it is conceivable that the combination of a biodegradable polymer and an active metal particle would form an unprecedented photocatalyst system, which will be quite promising for environmental remediation such as air filtration and water treatment.
Abstract: Ambient particulate matter pollution has posed serious threats to global environment and public health. However, highly efficient filtration of submicron particles, the so-named "secondary pollution" caused by, e.g., bacterial growth in filters and the use of nondegradable filter materials, remains a serious challenge. In this study, poly(vinyl alcohol) (PVA) and konjac glucomannan (KGM)-based nanofiber membranes, loaded with ZnO nanoparticles, were prepared through green electrospinning and ecofriendly thermal cross-linking. Thus obtained fibrous membranes not only show highly efficient air-filtration performance but also show superior photocatalytic activity and antibacterial activity. The filtration efficiency of the ZnO@PVA/KGM membranes for ultrafine particles (300 nm) was higher than 99.99%, being superior to that of commercial HEPA filters. By virtue of the high photocatalytic activity, methyl orange was efficiently decolorized with a removal efficiency of more than 98% at an initial concentration of 20 mg L-1 under 120 min of solar irradiation. A multifunctional membrane with high removal efficiency, low flow resistance, superior photocatalytic activity, and superior antibacterial activity was successfully achieved. It is conceivable that the combination of a biodegradable polymer and an active metal particle would form an unprecedented photocatalytic system, which will be quite promising for environmental remediation such as air filtration and water treatment.

302 citations


Journal ArticleDOI
TL;DR: Mechanism analysis reveals that the excellent EM wave absorption and shielding performances of the hybrid are contributed to the synergistic effect of conductive MXene and magnetic Ni chains, by which, the dielectric properties and electromagnetic loss can be easily controlled to obtain appropriate impedance matching conditions and good EM wave dissipation ability.
Abstract: Electromagnetic (EM) pollution affecting people's normal lives and health has attracted considerable attention in the current society. In this work, a promising EM wave absorption and shielding material, MXene/Ni hybrid, composed of one-dimensional Ni nanochains and two-dimensional Ti3C2Tx nanosheets (MXene), is successfully designed and developed. As expected, excellent EM wave absorption and shielding properties are obtained and controlled by only adjusting the MXene content in the hybrid. A minimum reflection loss of -49.9 dB is obtained only with a thickness of 1.75 mm at 11.9 GHz when the MXene content is 10 wt %. Upon further increasing the MXene content to 50 wt %, the optimal EM shielding effectiveness (SE) reaches 66.4 dB with an absorption effectiveness (SEA) of 59.9 dB. Mechanism analysis reveals that the excellent EM wave absorption and shielding performances of the hybrid are contributed to the synergistic effect of conductive MXene and magnetic Ni chains, by which, the dielectric properties and electromagnetic loss can be easily controlled to obtain appropriate impedance matching conditions and good EM wave dissipation ability. This work provides a simple but effective route to develop MXene-based EM wave absorption and shielding materials. A universal guideline for designing the absorbing and shielding materials for the future is also proposed.

292 citations


Journal ArticleDOI
TL;DR: The paper-based humidity sensor has good flexibility and compatibility, endowing it with multifunctional applications for breath rate, baby diaper wetting, noncontact switch, skin humidity, and spatial localization monitoring.
Abstract: Developing a facile, cost-saving, and environment-friendly method for fabricating a multifunctional humidity sensor is of great significance to expand its practical applications. However, most humidity sensors involve a complex fabrication process, resulting in their high cost and narrow application fields. Herein, a multifunctional paper-based humidity sensor with many advantages is proposed. This humidity sensor is fabricated using conventional printing paper and flexible conductive adhesive tape by a facile pasting method, in which the paper is used as both the humidity-sensing material and the substrate of the sensor. Owing to the moderate hydrophilicity of the paper and the rational structure design of the paper-based humidity sensor, the sensor exhibits an excellent humidity-sensing response of more than 103 as well as good linearity ( R2 = 0.9549) within the humidity range from 41.1 to 91.5% relative humidity. Furthermore, the paper-based humidity sensor has good flexibility and compatibility, endowing it with multifunctional applications for breath rate, baby diaper wetting, noncontact switch, skin humidity, and spatial localization monitoring. Although the resistance of the paper-based humidity sensor is relatively large, the humidity-sensing response signals of the sensor can be conveniently processed by the designed signal processing system. The readily available starting materials and facile fabrication technique provide useful strategies for the development of multifunctional humidity sensors.

279 citations


Journal ArticleDOI
TL;DR: An interfacial modulation strategy for achieving this goal in the commonly reported dielectric carbon nanotubes@polyaniline (CNTs@PANi) hybrid microwave absorber by optimizing the CNT nanocore structure is developed.
Abstract: Making full use of the interface modulation-induced interface polarization is an effective strategy to achieve excellent microwave absorption (MA). In this study, we develop an interfacial modulati...

Journal ArticleDOI
TL;DR: The strategy to design the tough, adhesive, self-healable, and conductive hydrogel as skin strain sensors by the zwitterionic nanocomposite hydrogels is promising for practical applications.
Abstract: It is desired to create skin strain sensors composed of multifunctional conductive hydrogels with excellent toughness and adhesion properties to sustain cyclic loadings during use and facilitate the electrical signal transmission. Herein, we prepared transparent, compliant, and adhesive zwitterionic nanocomposite hydrogels with excellent mechanical properties. The incorporated zwitterionic polymers can form interchain dipole–dipole associations to offer additional physical cross-linking of the network. The hydrogels show a high fracture elongation up to 2000%, a fracture strength up to 0.27 MPa, and a fracture toughness up to 2.45 MJ/m3. Moreover, the reversible physical interaction imparts the hydrogels with rapid self-healing ability without any stimuli. The hydrogels are adhesive to many surfaces including polyelectrolyte hydrogels, skin, glasses, silicone rubbers, and nitrile rubbers. The presence of abundant zwitterionic groups facilitates ionic conductivity in the hydrogels. The combination of these...

Journal ArticleDOI
TL;DR: This work provides new insight into the fabrication of stable, ultrastretchable, and ultrasensitive strain sensors using chemically modified organohydrogel for emerging wearable electronics.
Abstract: Ionic hydrogels, a class of intrinsically stretchable and conductive materials, are widely used in soft electronics. However, the easy freezing and drying of water-based hydrogels significantly limit their long-term stability. Here, a facile solvent-replacement strategy is developed to fabricate ethylene glycol (Eg)/glycerol (Gl)-water binary antifreezing and antidrying organohydrogels for ultrastretchable and sensitive strain sensing within a wide temperature range. Because of the ready formation of strong hydrogen bonds between Eg/Gl and water molecules, the organohydrogels gain exceptional freezing and drying tolerance with retained deformability, conductivity, and self-healing ability even stay at extreme temperature for a long time. Thus, the fabricated strain sensor displays a gauge factor of 6, which is much higher than previously reported values for hydrogel-based strain sensors. Furthermore, the strain sensor exhibits a relatively wide strain range (0.5-950%) even at -18 °C. Various human motions with different strain levels are monitored by the strain sensor with good stability and repeatability from -18 to 25 °C. The organohydrogels maintained the strain sensing capability when exposed to ambient air for nine months. This work provides new insight into the fabrication of stable, ultrastretchable, and ultrasensitive strain sensors using chemically modified organohydrogel for emerging wearable electronics.

Journal ArticleDOI
TL;DR: Thermal conductivities calculated by the established improved thermal conduction model were relatively closer to the experimental results than the results obtained from other classical models.
Abstract: Graphene presents an extremely ultra-high thermal conductivity, well above other known thermally conductive fillers. However, graphene tends to aggregate easily due to its strong intermolecular π–π...

Journal ArticleDOI
TL;DR: The overall recent progress made in developing MoS2 based flexible FETs, OLED displays, nonvolatile memory (NVM) devices, piezoelectric nanogenerators (PNGs), and sensors for wearable electronic and optoelectronic devices is discussed.
Abstract: Flexible, stretchable, and bendable materials, including inorganic semiconductors, organic polymers, graphene, and transition metal dichalcogenides (TMDs), are attracting great attention in such areas as wearable electronics, biomedical technologies, foldable displays, and wearable point-of-care biosensors for healthcare. Among a broad range of layered TMDs, atomically thin layered molybdenum disulfide (MoS2) has been of particular interest, due to its exceptional electronic properties, including tunable bandgap and charge carrier mobility. MoS2 atomic layers can be used as a channel or a gate dielectric for fabricating atomically thin field-effect transistors (FETs) for electronic and optoelectronic devices. This review briefly introduces the processing and spectroscopic characterization of large-area MoS2 atomically thin layers. The review summarizes the different strategies in enhancing the charge carrier mobility and switching speed of MoS2 FETs by integrating high-κ dielectrics, encapsulating layers, and other 2D van der Waals layered materials into flexible MoS2 device structures. The photoluminescence (PL) of MoS2 atomic layers has, after chemical treatment, been dramatically improved to near-unity quantum yield. Ultraflexible and wearable active-matrix organic light-emitting diode (AM-OLED) displays and wafer-scale flexible resistive random-access memory (RRAM) arrays have been assembled using flexible MoS2 transistors. The review discusses the overall recent progress made in developing MoS2 based flexible FETs, OLED displays, nonvolatile memory (NVM) devices, piezoelectric nanogenerators (PNGs), and sensors for wearable electronic and optoelectronic devices. Finally, it outlines the perspectives and tremendous opportunities offered by a large family of atomically thin-layered TMDs.

Journal ArticleDOI
TL;DR: A capacitive sensor enhanced by a tilted micropillar array-structured dielectric layer is developed that allows the device to remain in normal use without the need for repair or replacement despite mechanical damage.
Abstract: Sensitivity of the sensor is of great importance in practical applications of wearable electronics or smart robotics. In the present study, a capacitive sensor enhanced by a tilted micropillar array-structured dielectric layer is developed. Because the tilted micropillars undergo bending deformation rather than compression deformation, the distance between the electrodes is easier to change, even discarding the contribution of the air gap at the interface of the structured dielectric layer and the electrode, thus resulting in high pressure sensitivity (0.42 kPa-1) and very small detection limit (1 Pa). In addition, eliminating the presence of uncertain air gap, the dielectric layer is strongly bonded with the electrode, which makes the structure robust and endows the sensor with high stability and reliable capacitance response. These characteristics allow the device to remain in normal use without the need for repair or replacement despite mechanical damage. Moreover, the proposed sensor can be tailored to any size and shape, which is further demonstrated in wearable application. This work provides a new strategy for sensors that are required to be sensitive and reliable in actual applications.

Journal ArticleDOI
TL;DR: In this work, two kinds of Ni@C derived from the Ni-based MOFs with two kind of organic ligand (dimethylimidazole as ligand named Ni-ZIF, trimesic acid as ligands namedNi-BTC) were successfully obtained and exhibited the good microwave absorption properties.
Abstract: Metal-organic framework (MOF)-derived composites on the microwave absorption have received extensive attention. However, which kind of organic ligand corresponding MOF derivative has better electromagnetic wave absorption performance is an urgent problem to be solved. In this work, two kinds of Ni@C derived from the Ni-based MOFs with two kinds of organic ligands (dimethylimidazole as a ligand named as Ni-ZIF and trimesic acid as a ligand named as Ni-BTC) were successfully obtained. The compositions, morphologies, and electromagnetic properties of two composites were well controlled. As a result, both kinds of Ni@C exhibited the good microwave absorption properties. Comparatively speaking, the Ni@C derived from Ni-ZIF performs better. The Ni@C-ZIF microspheres with a 40% mass filling ratio exhibited a strong reflection loss of -86.8 dB at 13.2 GHz when the matching thickness was 2.7 mm, and the corresponding effective absorption bandwidth was 7.4 GHz (4-11.4 GHz) with the thickness ranging from 1.5 to 4.0 mm. The impedance matching, multiple reflection, and interfacial polarization among Ni and C were beneficial to the enhancement of microwave attenuation, which N-doping introduced by nitrogen-containing ligands leads to excellent microwave absorption properties. Therefore, this work can give insights into understanding the absorbing mechanism as well as provide a simple and flexible paradigm for the design and synthesis of the absorber with the tunable and high-efficiency performances.

Journal ArticleDOI
TL;DR: Ti3C2 MXene quantum dots (QDs) possess the activity of Pt as co-catalyst in promotion the photocatalytic H2 evolution to form heterostructure with g-C3N4 nanosheets (NSs) (denoted as g-N4@Ti2C2 QDs), causing the improvement of carrier transfer efficiency.
Abstract: The big challenging issues in photocatalytic H2 evolution are efficient separation of the photoinduced carriers, the stability of the catalyst, enhancing quantum efficiency, and requiring photoinduced electrons to enrich on photocatalysts' surface. Herein, Ti3C2 MXene quantum dots (QDs) possess the activity of Pt as a co-catalyst in promoting the photocatalytic H2 evolution to form heterostructures with g-C3N4 nanosheets (NSs) (denoted g-C3N4@Ti3C2 QDs). The photocatalytic H2 evolution rate of g-C3N4@Ti3C2 QD composites with an optimized Ti3C2 QD loading amounts (100 mL) is nearly 26, 3 and 10 times higher than pristine g-C3N4 NSs, Pt/g-C3N4, and Ti3C2 MXene sheet/g-C3N4, respectively. The Ti3C2 QDs increase the specific surface area of g-C3N4 and boost the density of the active site. Besides, metallic Ti3C2 QDs possess excellent electronic conductivity, causing the improvement of carrier transfer efficiency.

Journal ArticleDOI
TL;DR: The hybrid aerogel with high electrical conductivity, good mechanical strength, and superior EMI shielding performance is a promising material for inhibiting EMI pollution.
Abstract: Lightweight materials with high electrical conductivity and robust mechanical properties are highly desirable for electromagnetic interference (EMI) shielding in modern portable and highly integrated electronics. Herein, a three-dimensional (3D) porous Ti3C2Tx/carbon nanotube (CNT) hybrid aerogel was fabricated via a bidirectional freezing method for lightweight EMI shielding application. The synergism of the lamellar and porous structure of the MXene/CNT hybrid aerogels contributed extensively to their excellent electrical conductivity (9.43 S cm-1) and superior electromagnetic shielding effectiveness (EMI SE) value of 103.9 dB at 3 mm thickness at the X-band frequency, the latter of which is the best value reported for synthetic porous nanomaterials. The CNT reinforcement in the MXene/CNT hybrid aerogels enhanced the mechanical robustness and increased the compressional modulus by 9661% relative to that of the pristine MXene aerogel. The hybrid aerogel with high electrical conductivity, good mechanical strength, and superior EMI shielding performance is a promising material for inhibiting EMI pollution.

Journal ArticleDOI
TL;DR: There is an effective balance between dielectric loss and magnetic loss, which accounts for a very stable attenuation ability when the pyrolysis temperature range changes from 600 to 700 °C, which may render Fe/Fe3C@NCNTs composites as a novel kind of MAMs in the future.
Abstract: One-dimensional microstructure has been regarded as one of the most desirable configurations for magnetic carbon-based microwave absorbing materials (MAMs). Herein, pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes (Fe/Fe3C@NCNTs) are successfully prepared through a direct pyrolysis of the mixture of FeCl3·6H2O and melamine under inert atmosphere. The chemical composition and microstructural feature of these Fe/Fe3C@NCNTs composites are highly dependent on the pyrolysis temperature. As a result, their electromagnetic properties can be also manipulated, where dielectric loss gradually decreases with the increasing pyrolysis temperature and magnetic loss presents a reverse variation trend. When the pyrolysis temperature reaches 600 °C, the as-obtained composite, Fe/Fe3C@NCNTs-600 can perform a maximum reflection loss of −46.0 dB at 3.6 GHz with a thickness of 4.97 mm and a qualified bandwidth of 14.8 GHz with the integrated thickness from 1.00 to 5.00 mm. It is very interesting that...

Journal ArticleDOI
TL;DR: A ternary ionic hydrogel sensor consisting of tannic acid, sodium alginate, and covalent cross-linked polyacrylamide as skin-mountable and wearable sensors demonstrates superior sensing performance for real-time monitoring of the large and subtle human motions.
Abstract: Herein, we demonstrate a ternary ionic hydrogel sensor consisting of tannic acid, sodium alginate, and covalent cross-linked polyacrylamide as skin-mountable and wearable sensors. Based on the multiple weak H-bonds and synergistic effects between the three components, the as-prepared hybrid hydrogel exhibits ultrastretchability with high elasticity, good self-healing, excellent conformability, and high self-adhesiveness to diverse substrates both in air and underwater. More importantly, the ternary hydrogel exhibits high strain sensitivity especially under subtle strains with a gauge factor of 2.0, which is close to the theoretical value of the ionic hydrogel sensors; an extremely large workable range of strain (0.05–2100%); and a low operating voltage 0.07 V. Consequently, the sensor demonstrates superior sensing performance for real-time monitoring of the large and subtle human motions, including limb motions, swallowing, smiling, and wrist pulse. Therefore, it is believed that the STP hydrogel has grea...

Journal ArticleDOI
TL;DR: The finite element analysis indicates that the microstructured graphene electrode can enhance large deformation and thus effectively improve the sensitivity and the proposed pressure sensors are demonstrated with practical applications including insect crawling detection, wearable health monitoring, and force feedback of robot tactile sensing with a sensor array.
Abstract: High-performance flexible pressure sensors are highly desirable in health monitoring, robotic tactile, and artificial intelligence. Construction of microstructures in dielectrics and electrodes is the dominating approach to improving the performance of capacitive pressure sensors. Herein, we have demonstrated a novel three-dimensional microconformal graphene electrode for ultrasensitive and tunable flexible capacitive pressure sensors. Because the fabrication process is controllable, the morphologies of the graphene that is perfectly conformal with the electrode are controllable consequently. Multiscale morphologies ranging from a few nanometers to hundreds of nanometers, even to tens of micrometers, have been systematically investigated, and the high-performance capacitive pressure sensor with high sensitivity (3.19 kPa–1), fast response (30 ms), ultralow detection limit (1 mg), tunable-sensitivity, high flexibility, and high stability was obtained. Furthermore, an ultrasensitivity of 7.68 kPa–1 was succ...

Journal ArticleDOI
TL;DR: The as-synthesized MSLDH3 showed superior photocatalytic activities in degradation of RhB with H2 evolution, which was enhanced by 3- and 4.5-fold and 10-fold higher than that of NiFe LDH and MoS2, respectively, and possesses practical stability for its resultant enhanced photoc atalytic activity with recyclability for everyday life.
Abstract: Designing of an efficient heterostructure photocatalyst for photocatalytic organic pollutant removal and H2 production has been a subject of rigorous research intended to solve the related environmental aggravation and enormous energy crises. Z-scheme-based charge-transfer dynamics in a p-n heterostructure could significantly replicate the inherent power of natural photosynthesis, which is the key point to affect the transportation of photoinduced exciton pairs. In this finding, a series of p-type MoS2 loaded with n-type NiFe-layered double hydroxide (LDH) forming a heterostructure MoS2/NiFe LDH were designed by electrostatic self-assembled chemistry and an in situ hydrothermal strategy for photocatalytic rhodamine B (RhB) dye degradation and H2 production. The creation of p-n heterojunctions of type-II and Z-scheme mode of charge transfer modified the optical and electronic property of the as-synthesized MSLDH3, thereafter promoting the generation, separation, and migration of photoinduced electron-hole pairs. The as-synthesized MSLDH3 showed superior photocatalytic activities in degradation of RhB with H2 evolution, which was enhanced by 3- and 4.5-fold and 10.9 and 19.2 times higher than that of NiFe LDH and MoS2, respectively. Last but not the least, heterostructure MSLDH3 possesses practical stability for its resultant enhanced photocatalytic activity with recyclability for everyday life.

Journal ArticleDOI
TL;DR: It is demonstrated that a recoverable energy density and giant energy efficiency can be simultaneously achieved in 0.92BaTiO3-0.09NbO3 ceramics and confirmed by the piezoresponse force microscopy that the appearance of PNRs break the long range order and reduce the stability of microstructure, which explains the excellent energy storage performance of RFE ceramic.
Abstract: Barium titanate-based energy-storage dielectric ceramics have attracted great attention due to their environmental friendliness and outstanding ferroelectric properties. Here, we demonstrate that a recoverable energy density of 2.51 J cm-3 and a giant energy efficiency of 86.89% can be simultaneously achieved in 0.92BaTiO3-0.08K0.73Bi0.09NbO3 ceramics. In addition, excellent thermal stability (25-100 °C) and superior frequency stability (1-100 Hz) have been obtained under 180 kV cm-1. The first-order reversal curve method and transmission electron microscopy measurement show that the introduction of K0.73Bi0.09NbO3 makes ferroelectric domains to transform into highly dynamic polar nanoregions (PNRs), leading to the concurrently enhanced energy-storage properties by the transition from ferroelectric to relaxor ferroelectric (RFE). Furthermore, it is confirmed by piezoresponse force microscopy that the appearance of PNRs breaks the long-range order to some extent and reduces the stability of the microstructure, which explains the excellent energy-storage performance of RFE ceramics. Therefore, this work has promoted the practical application ability of BaTiO3-based energy-storage dielectric ceramics.

Journal ArticleDOI
TL;DR: The polyimide/carbon nanotube composite aerogel with the merits of superelastic, high porosity, robust and high temperature resistance was successfully prepared through the freeze-drying plus thermal imidization process, demonstrating its great potential to serve as high-performance wearable pressure sensor.
Abstract: Wearable pressure sensors are in great demand with the rapid development of intelligent electronic devices. However, it is still a huge challenge to obtain high-performance pressure sensors with high sensitivity, wide response range, and low detection limit simultaneously. Here, a polyimide (PI)/carbon nanotube (CNT) composite aerogel with the merits of superelastic, high porosity, robust, and high-temperature resistance was successfully prepared through the freeze drying plus thermal imidization process. Benefiting from the strong chemical interactions between PI and CNT and stable electrical property, the composite aerogel exhibits versatile and superior brilliant sensing performance, which includes wide sensing range (80% strain, 61 kPa), ultrahigh sensitivity (11.28 kPa-1), ultralow detection limit (0.1% strain, <10 Pa), fast response time (50 ms) and recovery time (70 ms), remarkable long-term stability (1000 cycles), and exceptional detection ability toward different deformations (compression, distortion, and bending). Furthermore, the composite aerogel also shows stable sensing performance after annealing under different high temperatures and good thermal insulation property, making it workable in various harsh environments. As a result, the composite aerogel is suitable for the full-range human motion detection (including airflow, pulse, vocal cord vibration, and human movement) and precise detection of the pressure distribution when it is assembled into E-skin, demonstrating its great potential to serve as a high-performance wearable pressure sensor.

Journal ArticleDOI
TL;DR: This work fabricates flexible, freestanding, and binder-free silicon/MXene composite papers directly as anodes for LIBs, a silicon-based anode candidate for lithium-ion batteries that exhibits superior electrochemical performance.
Abstract: Silicon has been developed as the exceptionally desirable anode candidate for lithium-ion batteries (LIBs), attributing to its highest theoretical capacity, low working potential, and abundant resource. However, large volume expansion and poor conductivity hinder its practical application. Herein, we fabricate flexible, freestanding, and binder-free silicon/MXene composite papers directly as anodes for LIBs. The Silicon/MXene composite papers are synthesized via covalently anchoring silicon nanospheres on the highly conductive networks based on MXene sheets by vacuum filtration. This unique architecture can accommodate large volume expansion, enhance conductivity of composites, prevent restacking of MXene sheets, offer additional active sites, and facilitate efficient ion transport, which exhibits superior electrochemical performance with a high capacity of 2118 mAh·g–1 at 200 mA·g–1 current density after 100 cycles, a steady cycling ability of 1672 mAh·g–1 at 1000 mA·g–1 after 200 cycles, and a rate perf...

Journal ArticleDOI
TL;DR: A triple-layered TFC nanofiltration membrane consisting of a polyamide (PA) top layer covered on a poly(ether sulfone) microfiltration membrane with a carbon nanotube (CNT) interlayer showed a great promise for applications in both wastewater treatment and dyes recycling.
Abstract: A triple-layered TFC nanofiltration (NF) membrane consisting of a polyamide (PA) top layer covered on a poly(ether sulfone) microfiltration membrane with a carbon nanotube (CNT) interlayer was fabricated via interfacial polymerization. The structure and properties of the PA active layer could be finely tailored by tuning the interfacial properties and pore structure of the CNT interlayer, including its surface pore size and thickness, thus improving its NF performance. This TFC NF membrane exhibited a high divalent salt rejection (the rejection of Na2SO4 and MgSO4 solution >98.3%) and dye rejection (the rejection of methyl violet (MV) >99.5%) with a high pure water flux of around 21 L m–2 h–1 bar–1. Excitingly, this membrane also showed excellent selectivity to both mono/divalent salt ion (the selectivity of Cl–/SO42– is as high as 85.5) and NaCl/dye solution (the selectivity of NaCl/MV is more than 123.5), which are much higher than most of other commercial and reported NF membranes. Moreover, this membr...

Journal ArticleDOI
TL;DR: A stretchable strain sensor based on a designed crack structure was fabricated by spray-coating carbon nanotube ink onto an electrospun thermoplastic polyurethane (TPU) fibrous mat and prestretching treatment to overcome the trade-off relationship, demonstrating its potential applications in intelligent devices, electronic skins, and wearable healthcare monitors.
Abstract: Flexible strain sensors have attracted tremendous interest due to their potential application as intelligent wearable sensing devices. Among them, crack-based flexible strain sensors have been stud...

Journal ArticleDOI
TL;DR: This review focuses on the rapid development of the piezoresistive pressure sensors based on 3D conductive sponges and concludes with a critical reflection of the current status and challenges.
Abstract: High-performance flexible strain and pressure sensors are important components of the systems for human motion detection, human–machine interaction, soft robotics, electronic skin, etc., which are envisioned as the key technologies for applications in future human healthcare monitoring and artificial intelligence. In recent years, highly flexible and wearable strain/pressure sensors have been developed based on various materials/structures and transduction mechanisms. Piezoresistive three-dimensional (3D) monolithic conductive sponge, the resistance of which changes upon external pressure or stimuli, has emerged as a forefront material for flexible and wearable pressure sensor due to its excellent sensor performance, facile fabrication, and simple circuit integration. This review focuses on the rapid development of the piezoresistive pressure sensors based on 3D conductive sponges. Various piezoresistive conductive sponges are categorized into four different types and their material and structural charact...

Journal ArticleDOI
TL;DR: A robust hydrogel ionic conductor was rapidly fabricated with a facile one-pot approach by employing bioinspired agar with a physically cross- linked network, polyacrylamide with a photoinitiated cross-linked network under appropriate UV intensity, and Li+ as conductive ions.
Abstract: The latest generation flexible devices feature materials that are conductive, highly stretchable, and transparent to meet the requirements of a reliable performance. However, the existing conductors are mostly electronic conductors, which cannot satisfy these high-performance challenges. A robust hydrogel ionic conductor was rapidly fabricated with a facile one-pot approach by employing bioinspired agar with a physically cross-linked network, polyacrylamide (PAM) with a photoinitiated cross-linked network under appropriate UV intensity, and Li+ as conductive ions. The resulting Li+/agar/PAM ionic double-network hydrogels could be fabricated into various shapes through injection. The unique ionic hydrogel showed a remarkable stretchability with over 1600% extension, high tension/compression strength (0.22 MPa/3.5 MPa), and toughness (2.2 MJ/m3). Furthermore, it was demonstrated to possess dual sensory capabilities through the combination of both temperature and mechanical deformation. This hydrogel ionic conductor exhibited high stretching sensitivity with a gauge factor of 1.8 at strain 1100% and bending sensitivity in a broad angle range of 30-150°, respectively. Such highly optical transparency and elasticity endow the hydrogel-phosphor composites with promising luminescent properties. The multifunctional ionic hydrogel can be used as soft conductors for application in flexible devices such as ionic skin for wearable sensors and luminescence display.