scispace - formally typeset
Search or ask a question
Institution

Randall Division of Cell and Molecular Biophysics

About: Randall Division of Cell and Molecular Biophysics is a based out in . It is known for research contribution in the topics: Actin cytoskeleton & Skeletal muscle. The organization has 576 authors who have published 1229 publications receiving 78279 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The identification of the complex filamin c-Xin-Mena/VASP provides a first glance on the role of Xin in the molecular mechanisms involved in developmental and adaptive remodeling of the actin cytoskeleton during cardiac morphogenesis and sarcomere assembly.

97 citations

Journal ArticleDOI
TL;DR: All the possible clinical opportunities that this new knowledge offers to both stratify and treat cutaneous malignant melanoma patients are reviewed.
Abstract: Summary Metastatic cutaneous melanoma accounts for the majority of skin cancer deaths due to its aggressiveness and high resistance to current therapies. To efficiently metastasize, invasive melanoma cells need to change their cytoskeletal organization and alter contacts with the extracellular matrix and the surrounding stromal cells. Melanoma cells can use different migratory strategies depending on varying environments to exit the primary tumour mass and invade surrounding and later distant tissues. In this review, we have focused on tumour cell plasticity or the interconvertibility that melanoma cells have as one of the factors that contribute to melanoma metastasis. This has been an area of very intense research in the last 5 yr yielding a vast number of findings. We have therefore reviewed all the possible clinical opportunities that this new knowledge offers to both stratify and treat cutaneous malignant melanoma patients.

97 citations

Journal ArticleDOI
TL;DR: This work identifies mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses, and identifies an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy.
Abstract: Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.

97 citations

Journal ArticleDOI
TL;DR: The past and present of computational modeling of cell-cycle regulation is reviewed, possible future directions of the field are discussed, and new computational concepts and tools are discussed.
Abstract: One of the early success stories of computational systems biology was the work done on cell-cycle regulation. The earliest mathematical descriptions of cell-cycle control evolved into very complex, detailed computational models that describe the regulation of cell division in many different cell types. On the way these models predicted several dynamical properties and unknown components of the system that were later experimentally verified/ identified. Still, research on this field is far from over. We need to understand how the core cell-cycle machinery is controlled by internal and external signals, also in yeast cells and in the more complex regulatory networks of higher eukaryotes. Furthermore, there are many computational challenges what we face as new types of data appear thanks to continuing advances in experimental techniques. We have to deal with cell-to-cell variations, revealed by single cell measurements, as well as the tremendous amount of data flowing from high throughput machines. We need new computational concepts and tools to handle these data and develop more detailed, more precise models of cell-cycle regulation in various organisms. Here we review past and present of computational modeling of cell-cycle regulation, and discuss possible future directions of the field.

97 citations

Journal ArticleDOI
TL;DR: The Wiskott-Aldrich syndrome protein (WASP) is a scaffold for the binding of the potent actin nucleating protein complex known as Arp2/3 as discussed by the authors.
Abstract: The regulated migration and spatial localization of dendritic cells in response to environmental signals are critical events during the initiation of physiological immune responses and maintenance of tolerance. Cells deficient in the Wiskott-Aldrich syndrome protein (WASP) have been used to demonstrate the importance of the dynamic remodelling of the actin-based cytoskeleton during the selective adhesion and migration of these cells. Unlike most cell types, macrophages, dendritic cells, and osteoclasts utilize a specialized adhesive array termed the podosome in order to migrate. Podosomes are composed of many of the same structural and regulatory proteins as seen in the more commonly found focal adhesion, but are unique in their requirement for WASP. Without WASP, podosomes cannot form and the affected cells are obliged to use focal adhesions for their migratory activities. Once activated by a series of upstream regulatory proteins, WASP acts as a scaffold for the binding of the potent actin nucleating protein complex known as Arp2/3. This article reviews the available evidence that suggests that failures in the regulation of the actin cytoskeleton may contribute significantly to the immunopathology of the Wiskott-Aldrich syndrome.

97 citations


Authors

Showing all 576 results

NameH-indexPapersCitations
Janet M. Thornton130539105144
Graham Dunn10148437152
Anne J. Ridley9625647563
Luigi Cavallo7954625262
Erik Sahai6914324753
Christopher Corrigan6927722451
Mathias Gautel6915916377
Hannah J. Gould6020711436
Enrico Girardi5936812712
Paul Brown5925113251
John G. Parnavelas5816411046
Heinz Jungbluth5721113707
Gareth E. Jones551619816
Linda J. Richards5415410093
Elisabeth Ehler541328503
Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

95% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202115
202026
201926
201848
201788
2016113