scispace - formally typeset
Search or ask a question
Institution

Randall Division of Cell and Molecular Biophysics

About: Randall Division of Cell and Molecular Biophysics is a based out in . It is known for research contribution in the topics: Actin cytoskeleton & Skeletal muscle. The organization has 576 authors who have published 1229 publications receiving 78279 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The study revealed that promiscuous residues tend to be more flexible than nonpromiscuous ones, and this additional flexibility has a higher degree of organization, and evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics.
Abstract: The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calcul...

39 citations

Journal ArticleDOI
TL;DR: It is hypothesised that PAK2 acts in part via PAK1 to regulate HGF-induced scattering, and increases phosphorylation ofPAK1, indicating thatPAK2 provides a negative feedback on PAK 1.

39 citations

Journal ArticleDOI
TL;DR: The measured affinity of the interaction of the peptides with the free dimer ends on the membrane permits an estimate of the equilibrium between intact and dissociated tetramers on the native membrane, which indicates that in the physiological state the equilibrium proportion of the dissociate tetramer may be as high as 5-10%.
Abstract: Spectrin tetramer is the major structural member of the membrane-associated skeletal network of red cells. We show here that disruption of the spectrin-ankyrin-band 3 link to the membrane leads to dissociation of a large proportion of the tetramers into dimers. Noncovalent perturbation of the linkage was induced by a peptide containing the ankyrin-binding site of the spectrin beta-chain, and covalent perturbation by treatment with the thiol reagent, N-ethylmaleimide (NEM). This reagent left the intrinsic self-association capacity of the spectrin dimers unaffected and disturbed only the ankyrin-band 3 interaction. The dissociation of spectrin tetramers on the membrane into functional dimers was confirmed by the binding of a spectrin peptide directed against the self-association sites. Dissociation of the tetramers resulted, we infer, from detachment of the proximal ends of the constituent dimers from the membrane, thereby reducing their proximity to one another and thus weakening their association. The measured affinity of the interaction of the peptides with the free dimer ends on the membrane permits an estimate of the equilibrium between intact and dissociated tetramers on the native membrane. This indicates that in the physiological state the equilibrium proportion of the dissociated tetramers may be as high as 5-10%. These findings enabled us to identify an additional important functional role for the spectrin-ankyrin-band 3 link in regulating spectrin self-association in the red cell membrane.

39 citations

Journal ArticleDOI
TL;DR: Cdc42 activity is impaired in β1 integrin-deficient T cells that form conjugates with antigen-presenting cells but is partially restored in the context of an antigen-specific synapse due, at least in part, to the recruitment and activation of β2 integrin.
Abstract: The Rho GTPase Cdc42 regulates cytoskeletal changes at the immunological synapse (IS) that are critical to T-cell activation. By imaging fluorescent activity biosensors (Raichu) using fluorescence lifetime imaging microscopy, Cdc42 activation was shown to display kinetics that are conditional on the specific receptor input (through two IS-associated receptors, CD3 and β1 integrin). CD3-triggered Cdc42 activity is dependent on the cyto-2 (NPIY) motif of the β1 integrin cytoplasmic domain. Perturbations of the ezrin-radixin-moesin (ERM) function blocked CD3- and β1-dependent increases in Cdc42 activity. Both IS-associated receptors probably lie on a serial molecular pathway and transduce signals through the ERM-dependent machinery that is responsible for the remodeling and stabilization of the synapse. Cdc42 activity is impaired in β1 integrin-deficient T cells that form conjugates with antigen-presenting cells but is partially restored in the context of an antigen-specific synapse. This restoration of Cdc42 activity is due, at least in part, to the recruitment and activation of β2 integrin.

39 citations

Journal ArticleDOI
TL;DR: Proof of principle experiments demonstrate that WAS protein (WASp) transgene expression can be successfully maintained long term in primary and secondary recipients, and that it is associated with a significant repair of migratory defects.

38 citations


Authors

Showing all 576 results

NameH-indexPapersCitations
Janet M. Thornton130539105144
Graham Dunn10148437152
Anne J. Ridley9625647563
Luigi Cavallo7954625262
Erik Sahai6914324753
Christopher Corrigan6927722451
Mathias Gautel6915916377
Hannah J. Gould6020711436
Enrico Girardi5936812712
Paul Brown5925113251
John G. Parnavelas5816411046
Heinz Jungbluth5721113707
Gareth E. Jones551619816
Linda J. Richards5415410093
Elisabeth Ehler541328503
Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

95% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202115
202026
201926
201848
201788
2016113