scispace - formally typeset
Search or ask a question
Institution

Randall Division of Cell and Molecular Biophysics

About: Randall Division of Cell and Molecular Biophysics is a based out in . It is known for research contribution in the topics: Actin cytoskeleton & Skeletal muscle. The organization has 576 authors who have published 1229 publications receiving 78279 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that an engineered titin-mimicking protein is able to spontaneously dimerize in solution, and a simple molecular model is proposed to understand the force-induced dimer-to-monomer transition based on the geometric distribution of forces occurring within a dimeric protein under mechanical tension.

12 citations

Journal ArticleDOI
TL;DR: Findings suggest that PfDLC1 might play an important role in P. falciparum erythrocytic stages by its interaction with myosin A and actin 1, known to be essential for parasite development.

12 citations

Journal ArticleDOI
15 Dec 2006-Proteins
TL;DR: To gain greater insight into the inhibitory process, the authors selected two strongly inhibitory antibodies and modeled their structures by homology and obtained plausible models that can provide valuable guidelines for future experimental work that is devoted to the understanding of the action mechanism of invasion‐inhibitory antibodies.
Abstract: Merozoite surface protein 1 (MSP1) of the malaria parasite Plasmodium falciparum is an important vaccine candidate antigen. Antibodies specific for the C-terminal maturation product, MSP1(19), have been shown to inhibit erythrocyte invasion and parasite growth. Specific monoclonal antibodies react with conformational epitopes contained within the two EGF-like domains that constitute the antigen MSP1(19). To gain greater insight into the inhibitory process, the authors selected two strongly inhibitory antibodies (designated 12.8 and 12.10) and modeled their structures by homology. Computational docking was used to generate antigen-antibody complexes and a selection filter based on NMR data was applied to obtain plausible models. Molecular Dynamics simulations of the selected complexes were performed to evaluate the role of specific side chains in the binding. Favorable complexes were obtained that complement the NMR data in defining specific binding sites. These models can provide valuable guidelines for future experimental work that is devoted to the understanding of the action mechanism of invasion-inhibitory antibodies.

12 citations

Journal ArticleDOI
TL;DR: In this article, the coupled dynamics of primary and secondary structures formation are studied in the context of a solvable microscopic model that includes both short-range steric forces and long-range polarity-driven forces.
Abstract: We study the coupled dynamics of primary and secondary structures formation (i.e. slow-genetic sequence selection and fast folding) in the context of a solvable microscopic model that includes both short-range steric forces and long-range polarity-driven forces. Our solution is based on the diagonalization of replicated transfer matrices, and leads in the thermodynamic limit to explicit predictions regarding phase transitions and phase diagrams at genetic equilibrium. The predicted phenomenology allows for natural physical interpretations, and finds satisfactory support in numerical simulations.

12 citations

Journal ArticleDOI
TL;DR: This work reports a combination of atomistic and coarse-grained simulations that probe the structure and dynamics of the equatorial region of the GroEL/GroES chaperonin complex and shows that theEquatorial region provides a translocation channel that will block the passage of folded proteins but allows the passing of secondary units with the diameter of an alpha-helix.
Abstract: The biological function of chaperone complexes is to assist the folding of non-native proteins. The widely studied GroEL chaperonin is a double-barreled complex that can trap non-native proteins in one of its two barrels. The ATP-driven binding of a GroES cap then results in a major structural change of the chamber where the substrate is trapped and initiates a refolding attempt. The two barrels operate anti-synchronously. The central region between the two barrels contains a high concentration of disordered protein chains, the role of which was thus far unclear. In this work we report a combination of atomistic and coarse-grained simulations that probe the structure and dynamics of the equatorial region of the GroEL/GroES chaperonin complex. Surprisingly, our simulations show that the equatorial region provides a translocation channel that will block the passage of folded proteins but allows the passage of secondary units with the diameter of an alpha-helix. We compute the free-energy barrier that has to be overcome during translocation and find that it can easily be crossed under the influence of thermal fluctuations. Hence, strongly non-native proteins can be squeezed like toothpaste from one barrel to the next where they will refold. Proteins that are already fairly close to the native state will not translocate but can refold in the chamber where they were trapped. Several experimental results are compatible with this scenario, and in the case of the experiments of Martin and Hartl, intra chaperonin translocation could explain why under physiological crowding conditions the chaperonin does not release the substrate protein.

11 citations


Authors

Showing all 576 results

NameH-indexPapersCitations
Janet M. Thornton130539105144
Graham Dunn10148437152
Anne J. Ridley9625647563
Luigi Cavallo7954625262
Erik Sahai6914324753
Christopher Corrigan6927722451
Mathias Gautel6915916377
Hannah J. Gould6020711436
Enrico Girardi5936812712
Paul Brown5925113251
John G. Parnavelas5816411046
Heinz Jungbluth5721113707
Gareth E. Jones551619816
Linda J. Richards5415410093
Elisabeth Ehler541328503
Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

95% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202115
202026
201926
201848
201788
2016113