scispace - formally typeset
Search or ask a question

Showing papers by "Randall Division of Cell and Molecular Biophysics published in 2014"


Journal ArticleDOI
TL;DR: The data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1β processing within the Salmonella-infected cell and to regulate the bacterial burden in mice.
Abstract: Pathogen recognition by nucleotide-binding oligomerization domain-like receptor (NLR) results in the formation of a macromolecular protein complex (inflammasome) that drives protective inflammatory responses in the host. It is thought that the number of inflammasome complexes forming in a cell is determined by the number of NLRs being activated, with each NLR initiating its own inflammasome assembly independent of one another; however, we show here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) simultaneously activates at least two NLRs, whereas only a single inflammasome complex is formed in a macrophage. Both nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 are simultaneously present in the same inflammasome, where both NLRs are required to drive IL-1β processing within the Salmonella-infected cell and to regulate the bacterial burden in mice. Superresolution imaging of Salmonella-infected macrophages revealed a macromolecular complex with an outer ring of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain and an inner ring of NLRs, with active caspase effectors containing the pro–IL-1β substrate localized internal to the ring structure. Our data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1β processing during Salmonella infection.

283 citations


Journal ArticleDOI
30 Jan 2014-Cell
TL;DR: It is shown that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs, and that cells actively regulate and modulate their lipid composition and localization during division.

257 citations


Journal ArticleDOI
TL;DR: Surprisingly, it is found that rounded-amoeboid melanoma cells secrete higher levels of several MMPs, including collagenase MMP-13 and gelatinase M MP-9, which helps them degrade collagen I more efficiently than elongated-mesenchymal cells.
Abstract: Rounded-amoeboid cancer cells use actomyosin contractility driven by Rho-ROCK and JAK-STAT3 to migrate efficiently. It has been suggested that rounded-amoeboid cancer cells do not require matrix metalloproteinases (MMPs) to invade. Here we compare MMP levels in rounded-amoeboid and elongated-mesenchymal melanoma cells. Surprisingly, we find that rounded-amoeboid melanoma cells secrete higher levels of several MMPs, including collagenase MMP-13 and gelatinase MMP-9. As a result, rounded-amoeboid melanoma cells degrade collagen I more efficiently than elongated-mesenchymal cells. Furthermore, using a non-catalytic mechanism, MMP-9 promotes rounded-amoeboid 3D migration through regulation of actomyosin contractility via CD44 receptor. MMP-9 is upregulated in a panel of rounded-amoeboid compared with elongated-mesenchymal melanoma cell lines and its levels are controlled by ROCK-JAK-STAT3 signalling. MMP-9 expression increases during melanoma progression and it is particularly prominent in the invasive fronts of lesions, correlating with cell roundness. Therefore, rounded-amoeboid cells use both catalytic and non-catalytic activities of MMPs for invasion.

149 citations


Journal ArticleDOI
TL;DR: Some of the reasons why it has been challenging to study lipids are discussed and technological developments that are allowing us to begin lifting lipids out of their “Cinderella” status are outlined.
Abstract: Lipids are a major class of biological molecules and play many key roles in different processes. The diversity of lipids is on the same order of magnitude as that of proteins: cells express tens of thousands of different lipids and hundreds of proteins to regulate their metabolism and transport. Despite their clear importance and essential functions, lipids have not been as well studied as proteins. We discuss here some of the reasons why it has been challenging to study lipids and outline technological developments that are allowing us to begin lifting lipids out of their "Cinderella" status. We focus on recent advances in lipid identification, visualization, and investigation of their biophysics and perturbations and suggest that the field has sufficiently advanced to encourage broader investigation into these intriguing molecules.

148 citations


Journal ArticleDOI
TL;DR: It is found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling.
Abstract: Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis.

147 citations



Journal ArticleDOI
TL;DR: How Rho GTPases contribute to other hallmarks of cancer with a special emphasis on malignant transformation is reviewed.
Abstract: Rho GTPases are involved in the acquisition of all the hallmarks of cancer, which comprise 6 biological capabilities acquired during the development of human tumors. The hallmarks include proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis programs, as defined by Hanahan and Weinberg.1 Controlling these hallmarks are genome instability and inflammation. Emerging hallmarks are reprogramming of energy metabolism and evading immune destruction. To give a different view to the readers, we will not be focusing on invasion, metastasis, or cytoskeletal remodeling, but we will review here how Rho GTPases contribute to other hallmarks of cancer with a special emphasis on malignant transformation.

145 citations


Journal ArticleDOI
01 Jan 2014-Brain
TL;DR: The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.
Abstract: Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.

141 citations


Journal ArticleDOI
TL;DR: Significant evidence is provided that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting and substantially suppressed tumor growth in mice with TNBC xenografts derived from either cell lines or patients.
Abstract: Patients with triple-negative breast cancer (TNBC), a particularly aggressive form, have few treatment options. Targeting either the phosphatidylinositol 3-kinase to Akt (PI3K-Akt) pathway or epidermal growth factor receptor (EGFR) inhibits tumor growth in some patients, but durable responses are rare. Modeling studies using cell lines predict that the EGFR family member HER3 (human epidermal growth factor receptor 3) may confer drug resistance. Now, Tao et al . provide evidence from patient tumors to support those predictions. Treatment with PI3K-Akt pathway inhibitors increased the abundance of both total and activated HER3 in TNBC cells in culture and TNBC xenografts in mice. Residual tumors from patients treated with EGFR inhibitors had increased abundance and activation of HER3. Combining inhibitors of the PI3K-Akt pathway with a dual inhibitor of EGFR and HER3 substantially suppressed tumor growth in mice with TNBC xenografts derived from either cell lines or patients, suggesting that this combined strategy may improve therapeutic outcome in TNBC patients.

131 citations


Journal ArticleDOI
TL;DR: Neural crest epithelial–mesenchymal transition (EMT) and collective cell migration rely on a solid-to-liquid-like transition triggered by internalization of N-cadherin downstream of lysophosphatidic acid receptor 2.
Abstract: Collective cell migration (CCM) and epithelial–mesenchymal transition (EMT) are common to cancer and morphogenesis, and are often considered to be mutually exclusive in spite of the fact that many cancer and embryonic cells that have gone through EMT still cooperate to migrate collectively. Here we use neural crest (NC) cells to address the question of how cells that have down-regulated cell–cell adhesions can migrate collectively. NC cell dissociation relies on a qualitative and quantitative change of the cadherin repertoire. We found that the level of cell–cell adhesion is precisely regulated by internalization of N-cadherin downstream of lysophosphatidic acid (LPA) receptor 2. Rather than promoting the generation of single, fully mesenchymal cells, this reduction of membrane N-cadherin only triggers a partial mesenchymal phenotype. This intermediate phenotype is characterized by an increase in tissue fluidity akin to a solid-like–to–fluid-like transition. This change of plasticity allows cells to migrate under physical constraints without abolishing cell cooperation required for collectiveness.

127 citations


Journal ArticleDOI
TL;DR: Embedded solvent replaces explicit water by a potential of mean force in MD, protein modelling, folding, design, prediction and drug screening and large-scale simulations allow for parametrisation via force matching.

Journal ArticleDOI
TL;DR: It is hypothesized that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function.

Journal ArticleDOI
TL;DR: A model for the control of heart muscle contraction in which the regulatory functions of the thin and thick filaments are coordinated by MyBP-C is lead to, providing an integrated framework for the design and development of therapeutic interventions in heart disease.
Abstract: Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

Journal ArticleDOI
TL;DR: This work identifies mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses, and identifies an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy.
Abstract: Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.

Journal ArticleDOI
TL;DR: High-resolution crystal structures of human recombinant and serum-derived IgG4-Fc reveal conformational variability at the CH3–CH3 interface that may promote Fab-arm exchange, and a unique conformation for the FG loop in the CH2 domain that would explain the poor FcγRII, F cγRIII and C1q binding properties of IgG 4 compared with IgG1 and -3.

Journal ArticleDOI
TL;DR: An overview of clinical, histopathological, and genetic aspects of the CNMs in the context of the key pathogenic mechanism is provided, unresolved questions are outlined, and promising future lines of enquiry are indicated.
Abstract: Centronuclear myopathies (CNMs) are a genetically heterogeneous group of inherited neuromuscular disorders characterized by clinical features of a congenital myopathy and abundant central nuclei as the most prominent histopathological feature. The most common forms of congenital myopathies with central nuclei have been attributed to X-linked recessive mutations in the MTM1 gene encoding myotubularin ("X-linked myotubular myopathy"), autosomal-dominant mutations in the DNM2 gene encoding dynamin-2 and the BIN1 gene encoding amphiphysin-2 (also named bridging integrator-1, BIN1, or SH3P9), and autosomal-recessive mutations in BIN1, the RYR1 gene encoding the skeletal muscle ryanodine receptor, and the TTN gene encoding titin. Models to study and rescue the affected cellular pathways are now available in yeast, C. elegans, drosophila, zebrafish, mouse, and dog. Defects in membrane trafficking have emerged as a key pathogenic mechanisms, with aberrant T-tubule formation, abnormalities of triadic assembly, and disturbance of the excitation-contraction machinery the main downstream effects studied to date. Abnormal autophagy has recently been recognized as another important collateral of defective membrane trafficking in different genetic forms of CNM, suggesting an intriguing link to primary disorders of defective autophagy with overlapping histopathological features. The following review will provide an overview of clinical, histopathological, and genetic aspects of the CNMs in the context of the key pathogenic mechanism, outline unresolved questions, and indicate promising future lines of enquiry.

Journal ArticleDOI
TL;DR: The model proposed here will help in designing molecules that can prevent or reverse the amyloid fibril formation or the aggregation and is demonstrated to demonstrate the crucial role of electrostatic interactions during amyloids fibrillar formation.
Abstract: Different proteins have different amino acid sequences as well as conformations, and therefore different propensities to aggregate. Electrostatic interactions have an important role in the aggregation of proteins as revealed by our previous report (J. M. Khan et al., PLoS One, 2012, 7, e29694). In this study, we designed and executed experiments to gain knowledge of the role of charge variations on proteins during the events of protein aggregation with lysozyme as a model protein. To impart positive and negative charges to proteins, we incubated lysozyme at different pH values of below and above the pI (∼11). Negatively charged SDS was used to ‘antagonize’ positive charges on lysozyme. We examined the effects of pH variations on SDS-induced amyloid fibril formation by lysozyme using methods such as far-UV circular dichroism, Rayleigh scattering, turbidity measurements, dye binding assays and dynamic light scattering. We found that sub-micellar concentrations of SDS (0.1 to 0.6 mM) induced amyloid fibril formation by lysozyme in the pH range of 10.0–1.0 and maximum aggregation was observed at pH 1.0. The morphology of aggregates was fibrillar in structure, as visualized by transmission electron microscopy. Isothermal titration calorimetry studies demonstrated that fibril formation is exothermic. To the best of our current understanding of the mechanism of aggregation, this study demonstrates the crucial role of electrostatic interactions during amyloid fibril formation. The model proposed here will help in designing molecules that can prevent or reverse the amyloid fibril formation or the aggregation.

Journal ArticleDOI
TL;DR: In this paper, it was shown that applying structured illumination microscopy to coherent imaging modalities such as scattering does not yield any additional information beyond that provided by oblique illumination and thus yields no resolution enhancement over the Abbe diffraction limit, which was derived precisely for that case.
Abstract: Applying structured illumination microscopy to coherent imaging modalities such as scattering does not yield any additional information beyond that provided by oblique illumination. It thus yields no resolution enhancement over the Abbe diffraction limit, which was derived precisely for that case.

Journal ArticleDOI
TL;DR: Structural variation between human IgG subclasses and allotypes at three amino acid positions is identified to alter the strength of inter-domain interactions by >6 orders of magnitude, resulting in half-molecule exchange in vivo for IgG4.

Journal ArticleDOI
TL;DR: A combined univariate and bivariate Getis and Franklin’s local point pattern analysis method is demonstrated to investigate the co-clustering of membrane proteins in two-dimensional single-molecule localisation data and can quantify the degree of cluster overlap in multichannel point patterns.
Abstract: We demonstrate a combined univariate and bivariate Getis and Franklin’s local point pattern analysis method to investigate the co-clustering of membrane proteins in two-dimensional single-molecule localisation data. This method assesses the degree of clustering of each molecule relative to its own species and relative to a second species. Using simulated data, we show that this approach can quantify the degree of cluster overlap in multichannel point patterns. The method is validated using photo-activated localisation microscopy and direct stochastic optical reconstruction microscopy data of the proteins Lck and CD45 at the T cell immunological synapse. Analysing co-clustering in this manner is generalizable to higher numbers of fluorescent species and to three-dimensional or live cell data sets.

Journal ArticleDOI
TL;DR: The present study shows that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear, thereby contributing to lymphatic vasculature development.


Journal ArticleDOI
TL;DR: It is shown that the Plexin B2 receptor interacts physically and functionally with Rnd3 and stimulates RhoA activity in migrating cortical neurons, and an interaction between the cell-extrinsic Plexin signalling pathway and thecell-intrinsics Ascl1-Rnd3 pathway determines the level of R HoA activity appropriate for cortical neuron migration.
Abstract: A transcriptional programme initiated by the proneural factors Neurog2 and Ascl1 controls successive steps of neurogenesis in the embryonic cerebral cortex. Previous work has shown that proneural factors also confer a migratory behaviour to cortical neurons by inducing the expression of the small GTP-binding proteins such as Rnd2 and Rnd3. However, the directionality of radial migration suggests that migrating neurons also respond to extracellular signal-regulated pathways. Here we show that the Plexin B2 receptor interacts physically and functionally with Rnd3 and stimulates RhoA activity in migrating cortical neurons. Plexin B2 competes with p190RhoGAP for binding to Rnd3, thus blocking the Rnd3-mediated inhibition of RhoA and also recruits RhoGEFs to directly stimulate RhoA activity. Thus, an interaction between the cell-extrinsic Plexin signalling pathway and the cell-intrinsic Ascl1-Rnd3 pathway determines the level of RhoA activity appropriate for cortical neuron migration.

Journal ArticleDOI
TL;DR: It is shown that recognition of self-antigens expressed by endothelial cells in target tissue is instrumental for efficient Treg recruitment in vivo, enabling a Teff:Treg ratio optimal for regulation.
Abstract: Localization of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells to lymphoid and non-lymphoid tissue is instrumental for the effective control of immune responses. Compared with conventional T cells, Treg cells constitute a minute fraction of the T-cell repertoire. Despite this numeric disadvantage, Tregs efficiently migrate to sites of immune responses reaching an optimal number for the regulation of T effector (Teff) cells. The array and levels of adhesion and chemokine receptor expression by Tregs do not explain their powerful migratory capacity. Here we show that recognition of self-antigens expressed by endothelial cells in target tissue is instrumental for efficient Treg recruitment in vivo. This event relies upon IFN-γ-mediated induction of MHC-class-II molecule expression by the endothelium and requires optimal PI3K p110δ activation by the T-cell receptor. We also show that, once in the tissue, Tregs inhibit Teff recruitment, further enabling a Teff:Treg ratio optimal for regulation.

Journal ArticleDOI
TL;DR: The crystal structure of IgE-Fc is reported in a fully extended, symmetrical conformation and it is shown that the antibody can indeed adopt such extended conformations in solution.
Abstract: Crystallographic and solution studies have shown that IgE molecules are acutely bent in their Fc region. Crystal structures reveal the Cɛ2 domain pair folded back onto the Cɛ3-Cɛ4 domains, but is the molecule exclusively bent or can the Cɛ2 domains adopt extended conformations and even 'flip' from one side of the molecule to the other? We report the crystal structure of IgE-Fc captured in a fully extended, symmetrical conformation and show by molecular dynamics, calorimetry, stopped-flow kinetic, surface plasmon resonance (SPR) and Forster resonance energy transfer (FRET) analyses that the antibody can indeed adopt such extended conformations in solution. This diversity of conformational states available to IgE-Fc offers a new perspective on IgE function in allergen recognition, as part of the B-cell receptor and as a therapeutic target in allergic disease.

Journal ArticleDOI
TL;DR: In this paper, the epidermal growth factor receptor (EGFR) was found to interact directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain.
Abstract: The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.

Journal ArticleDOI
TL;DR: It is demonstrated that natural pollen exposure was associated with changes in IgE repertoires that were suggestive of ongoing germinal center reactions and were more often apparent in nasal biopsy specimens compared with peripheral blood and in patients with AR compared with healthy control subjects.
Abstract: Background: Previous studies of immunoglobulin gene sequences in patients with allergic diseases using low-throughput Sanger sequencing have limited the analytic depth for characterization of IgE repertoires Objectives: We used a high-throughput, next-generation sequencing approach to characterize immunoglobulin heavy-chain gene (IGH) repertoires in patients with seasonal allergic rhinitis (AR) with the aim of better understanding the underlying disease mechanisms Methods: IGH sequences in matched peripheral blood and nasal biopsy specimens from nonallergic healthy control subjects (n = 3) and patients with grass pollen–related AR taken in season (n = 3) or out of season (n = 4) were amplified and pyrosequenced on the 454 GS FLX+ System Results: A total of 97,610 IGH (including 8,135 IgE) sequences were analyzed Use of immunoglobulin heavy-chain variable region gene families 1 (IGHV1) and 5 (IGHV5) was higher in IgE clonotypic repertoires compared with other antibody classes independent of atopic status IgE repertoires measured inside the grass pollen season were more diverse and more mutated (particularly in the biopsy specimens) and had more evidence of antigen-driven selection compared with those taken outside of the pollen season or from healthy control subjects Clonal relatedness was observed for IgE between the blood and nasal biopsy specimens Furthermore in patients with AR, but not healthy control subjects, we found clonal relatedness between IgE and IgG classes Conclusion: This is the first report that exploits next-generation sequencing to determine local and peripheral blood IGH repertoires in patients with respiratory allergic disease We demonstrate that natural pollen exposure was associated with changes in IgE repertoires that were suggestive of ongoing germinal center reactions Furthermore, these changes were more often apparent in nasal biopsy specimens compared with peripheral blood and in patients with AR compared with healthy control subjects

Journal ArticleDOI
TL;DR: A conserved function of Ebp1 is demonstrated in the regulation of embryonic muscle progenitors and adult muscle stem cells, which likely operates independently of ErbB3 signaling.

Journal ArticleDOI
04 Aug 2014-PLOS ONE
TL;DR: In this paper, the authors used evoked electrical stimulation to show that tricaine efficiently blocks neural action potentials, but does not prevent directly evoked muscle contraction in zebrafish larvae.
Abstract: Movements in animals arise through concerted action of neurons and skeletal muscle. General anaesthetics prevent movement and cause loss of consciousness by blocking neural function. Anaesthetics of the amino amide-class are thought to act by blockade of voltage-gated sodium channels. In fish, the commonly used anaesthetic tricaine methanesulphonate, also known as 3-aminobenzoic acid ethyl ester, metacaine or MS-222, causes loss of consciousness. However, its role in blocking action potentials in distinct excitable cells is unclear, raising the possibility that tricaine could act as a neuromuscular blocking agent directly causing paralysis. Here we use evoked electrical stimulation to show that tricaine efficiently blocks neural action potentials, but does not prevent directly evoked muscle contraction. Nifedipine-sensitive L-type Cav channels affecting movement are also primarily neural, suggesting that muscle Nav channels are relatively insensitive to tricaine. These findings show that tricaine used at standard concentrations in zebrafish larvae does not paralyse muscle, thereby diminishing concern that a direct action on muscle could mask a lack of general anaesthesia.

Journal ArticleDOI
TL;DR: The results indicate that nesprin‐1 and nes Prin‐2 both regulate nuclear and cytoplasmic architecture, which is proposed leads to their effects on endothelial cell migration and angiogenic loop formation.
Abstract: Nesprins are large multi-domain proteins that link the nuclear envelope to the cytoskeleton and nucleoskeleton. Here we show that nesprin-1 and nesprin-2 play important roles in regulating cell shape and migration in endothelial cells. Nesprin-1 or nesprin-2 depletion by RNAi increased endothelial cell spread area and the length of cellular protrusions, as well as stimulating stress fibre assembly which correlated with an increase in F-actin levels. Nuclear area was also increased by nesprin depletion, and localization of the inner nuclear membrane protein emerin to the nuclear envelope was reduced. Depletion of nesprin-1 or nesprin-2 reduced migration of endothelial cells into a cell-free area, and decreased loop formation in an in vitro angiogenesis assay. Taken together, our results indicate that nesprin-1 and nesprin-2 both regulate nuclear and cytoplasmic architecture, which we propose leads to their effects on endothelial cell migration and angiogenic loop formation.