scispace - formally typeset
Search or ask a question
Institution

Randall Division of Cell and Molecular Biophysics

About: Randall Division of Cell and Molecular Biophysics is a based out in . It is known for research contribution in the topics: Actin cytoskeleton & Skeletal muscle. The organization has 576 authors who have published 1229 publications receiving 78279 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An SPR imaging (SPRI) sensor with a CMOS camera and an objective lens that could detect reactions of individual rat basophilic leukemia cells, mouse keratinocyte cells, and human epidermal carcinoma cells in response to either specific or non-specific stimuli, resembling signals obtained by a conventional SPR sensor are developed.

95 citations

Journal ArticleDOI
TL;DR: It is proposed that contractile stress transmitted from the apoptotic cell through E-cadherin adhesions elicits a mechanosensitive response in neighbor cells that is necessary for the morphogenetic event of apoptotic extrusion to occur.

94 citations

Journal ArticleDOI
TL;DR: A method to identify communication pathways by an information‐theoretical analysis of molecular dynamics simulations and showed that a preorganized network of fragment connections between the allosteric and functional sites exists already in the inactive state of all three proteins.
Abstract: Allostery offers a highly specific way to modulate protein function. Therefore, understanding this mechanism is of increasing interest for protein science and drug discovery. However, allosteric signal transmission is difficult to detect experimentally and to model because it is often mediated by local structural changes propagating along multiple pathways. To address this, we developed a method to identify communication pathways by an information-theoretical analysis of molecular dynamics simulations. Signal propagation was described as information exchange through a network of correlated local motions, modeled as transitions between canonical states of protein fragments. The method was used to describe allostery in two-component regulatory systems. In particular, the transmission from the allosteric site to the signaling surface of the receiver domain NtrC was shown to be mediated by a layer of hub residues. The location of hubs preferentially connected to the allosteric site was found in close agreement with key residues experimentally identified as involved in the signal transmission. The comparison with the networks of the homologues CheY and FixJ highlighted similarities in their dynamics. In particular, we showed that a preorganized network of fragment connections between the allosteric and functional sites exists already in the inactive state of all three proteins.—Pandini, A., Fornili, A., Fraternali, F., Kleinjung, J. Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics.

94 citations

Journal ArticleDOI
TL;DR: It is shown that the number and position of the hydroxyl groups and the presence/absence of the galloyl moiety have significant impact on the selected catechin solvation shells and hydrogen bond capabilities, which are ultimately linked to their ability to interact with and affect the biological environment.
Abstract: Green tea catechins are polyphenols which are believed to provide health benefits; they are marketed as health supplements and are studied for their potential effects on a variety of medical conditions. However, their mechanisms of action and interaction with the environment at the molecular level are still not well-understood. Here, by means of atomistic simulations, we explore the structural properties of four green tea catechins, in the gas phase and water solution: specifically, (-)-epigallocatechin-3-gallate, which is the most abundant, (-)-epicatechin-3-gallate, (-)-epigallocatechin-3-O-(3-O-methyl)-gallate, and (-)-epigallocatechin. We characterize the free energy conformational landscapes of these catechins at ambient conditions, as a function of the torsional degrees of freedom of the pholyphenolic rings, determining the stable conformers and their connections. We show that these free energy landscapes are only subtly influenced by the interactions with the solvent and by the structural details of the polyphenolic rings. However, the number and position of the hydroxyl groups (or their sustituents) and the presence/absence of the galloyl moiety have significant impact on the selected catechin solvation shells and hydrogen bond capabilities, which are ultimately linked to their ability to interact with and affect the biological environment.

94 citations

Journal ArticleDOI
TL;DR: The results suggest that PAK4 is a pluripotent kinase that can regulate both actin cytoskeletal rearrangement and focal-adhesion dynamics.
Abstract: Hepatocyte growth factor (HGF) is associated with tumour progression and increases the invasiveness of prostate carcinoma cells. Migration and invasion require coordinated reorganisation of the actin cytoskeleton and regulation of cell-adhesion dynamics. Rho-family GTPases orchestrate both of these cellular processes. p21-activated kinase 4 (PAK4), a specific effector of the Rho GTPase Cdc42, is activated by HGF, and we have previously shown that activated PAK4 induces a loss of both actin stress fibres and focal adhesions. We now report that DU145 human prostate cancer cells with reduced levels of PAK4 expression are unable to successfully migrate in response to HGF, have prominent actin stress fibres, and an increase in the size and number of focal adhesions. Moreover, these cells have a concomitant reduction in cell-adhesion turnover rates. We find that PAK4 is localised at focal adhesions, is immunoprecipitated with paxillin and phosphorylates paxillin on serine 272. Furthermore, we demonstrate that PAK4 can regulate RhoA activity via GEF-H1. Our results suggest that PAK4 is a pluripotent kinase that can regulate both actin cytoskeletal rearrangement and focal-adhesion dynamics.

94 citations


Authors

Showing all 576 results

NameH-indexPapersCitations
Janet M. Thornton130539105144
Graham Dunn10148437152
Anne J. Ridley9625647563
Luigi Cavallo7954625262
Erik Sahai6914324753
Christopher Corrigan6927722451
Mathias Gautel6915916377
Hannah J. Gould6020711436
Enrico Girardi5936812712
Paul Brown5925113251
John G. Parnavelas5816411046
Heinz Jungbluth5721113707
Gareth E. Jones551619816
Linda J. Richards5415410093
Elisabeth Ehler541328503
Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

95% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202115
202026
201926
201848
201788
2016113