scispace - formally typeset
Search or ask a question
Institution

Randall Division of Cell and Molecular Biophysics

About: Randall Division of Cell and Molecular Biophysics is a based out in . It is known for research contribution in the topics: Actin cytoskeleton & Skeletal muscle. The organization has 576 authors who have published 1229 publications receiving 78279 citations.


Papers
More filters
Journal ArticleDOI
01 Jun 2016-Neuron
TL;DR: This work demonstrates that the outward transport of dynein from soma to axon terminal is driven by direct interactions with the anterograde motor kinesin-1, and proposes a new model for the slow axonal transport of cytosolic cargos, based on short-lived direct interactions of cargo with a highly processive anterOGrade motor.

92 citations

Journal ArticleDOI
TL;DR: Mutation of a critical residue of fascin eliminates the protein’s actin-bundling activity but maintains its positive role in filopodia formation.
Abstract: Fascin is an evolutionarily conserved actin-binding protein that plays a key role in forming filopodia. It is widely thought that this function involves fascin directly bundling actin filaments, which is controlled by an N-terminal regulatory serine residue. In this paper, by studying cellular processes in Drosophila melanogaster that require fascin activity, we identify a regulatory residue within the C-terminal region of the protein (S289). Unexpectedly, although mutation (S289A) of this residue disrupted the actin-bundling capacity of fascin, fascin S289A fully rescued filopodia formation in fascin mutant flies. Live imaging of migrating macrophages in vivo revealed that this mutation restricted the localization of fascin to the distal ends of filopodia. The corresponding mutation of human fascin (S274) similarly affected its interaction with actin and altered filopodia dynamics within carcinoma cells. These data reveal an evolutionarily conserved role for this regulatory region and unveil a function for fascin, uncoupled from actin bundling, at the distal end of filopodia.

92 citations

Journal ArticleDOI
TL;DR: Insight is provided into the dependence of the activity of small molecule anti-integrin compounds upon receptor conformation, and a novel quantitative assay is provided for the validation of potential integrin antagonists.
Abstract: Both spatiotemporal analyses of adhesion signalling and the development of pharmacological inhibitors of integrin receptors currently suffer from the lack of an assay to measure integrin-effector binding and the response of these interactions to antagonists. Indeed, anti-integrin compounds have failed in the clinic because of secondary side effects resulting from agonistic activity. Here, we have expressed integrin-GFP and effector-mRFP pairs in living cells and quantified their association using fluorescence lifetime imaging microscopy (FLIM) to measure fluorescence resonance energy transfer (FRET). Association of talin with beta1 integrin and paxillin with alpha4 integrin was dependent on both the ligand and receptor activation state, and was sensitive to inhibition with small molecule RGD and LDV mimetics, respectively. An adaptation of the assay revealed the agonistic activity of these small molecules, thus demonstrating that these compounds may induce secondary effects in vivo via integrin activation. This study provides insight into the dependence of the activity of small molecule anti-integrin compounds upon receptor conformation, and provides a novel quantitative assay for the validation of potential integrin antagonists.

91 citations

Journal ArticleDOI
25 Apr 2013-Cell
TL;DR: In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, the results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins.

91 citations

Journal ArticleDOI
TL;DR: An overview of clinical, histopathological, and genetic aspects of the CNMs in the context of the key pathogenic mechanism is provided, unresolved questions are outlined, and promising future lines of enquiry are indicated.
Abstract: Centronuclear myopathies (CNMs) are a genetically heterogeneous group of inherited neuromuscular disorders characterized by clinical features of a congenital myopathy and abundant central nuclei as the most prominent histopathological feature. The most common forms of congenital myopathies with central nuclei have been attributed to X-linked recessive mutations in the MTM1 gene encoding myotubularin ("X-linked myotubular myopathy"), autosomal-dominant mutations in the DNM2 gene encoding dynamin-2 and the BIN1 gene encoding amphiphysin-2 (also named bridging integrator-1, BIN1, or SH3P9), and autosomal-recessive mutations in BIN1, the RYR1 gene encoding the skeletal muscle ryanodine receptor, and the TTN gene encoding titin. Models to study and rescue the affected cellular pathways are now available in yeast, C. elegans, drosophila, zebrafish, mouse, and dog. Defects in membrane trafficking have emerged as a key pathogenic mechanisms, with aberrant T-tubule formation, abnormalities of triadic assembly, and disturbance of the excitation-contraction machinery the main downstream effects studied to date. Abnormal autophagy has recently been recognized as another important collateral of defective membrane trafficking in different genetic forms of CNM, suggesting an intriguing link to primary disorders of defective autophagy with overlapping histopathological features. The following review will provide an overview of clinical, histopathological, and genetic aspects of the CNMs in the context of the key pathogenic mechanism, outline unresolved questions, and indicate promising future lines of enquiry.

91 citations


Authors

Showing all 576 results

NameH-indexPapersCitations
Janet M. Thornton130539105144
Graham Dunn10148437152
Anne J. Ridley9625647563
Luigi Cavallo7954625262
Erik Sahai6914324753
Christopher Corrigan6927722451
Mathias Gautel6915916377
Hannah J. Gould6020711436
Enrico Girardi5936812712
Paul Brown5925113251
John G. Parnavelas5816411046
Heinz Jungbluth5721113707
Gareth E. Jones551619816
Linda J. Richards5415410093
Elisabeth Ehler541328503
Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

95% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202115
202026
201926
201848
201788
2016113