scispace - formally typeset
Search or ask a question
Institution

Rural Development Administration

GovernmentJeonju, South Korea
About: Rural Development Administration is a government organization based out in Jeonju, South Korea. It is known for research contribution in the topics: Gene & Population. The organization has 4372 authors who have published 4919 publications receiving 94318 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Structural-activity relationships indicate that structural characteristics, such as types of functional groups and carbon skeleton rather than vapour pressure parameter, appear to play a role in determining toxicity.

31 citations

Journal ArticleDOI
TL;DR: A ‘Three Faucets and Cisterns Model’ is proposed about the relationship among the rate-limiting enzymes OsDXSs, OsPSYs, and OsBCHs as a “Faucet”, the biosynthetic capacity of intermediate metabolites as a’Cistern’, and the carotenoid accumulations as the content of “C istern”.
Abstract: Deoxyxylulose 5-phosphate synthase (DXS) and deoxyxylulose 5-phosphate reductoisomerase (DXR) are the enzymes that catalyze the first two enzyme steps of the methylerythritol 4-phosphate (MEP) pathway to supply the isoprene building-blocks of carotenoids. Plant DXR and DXS enzymes have been reported to function differently depending on the plant species. In this study, the differential roles of rice DXS and DXR genes in carotenoid metabolism were investigated. The accumulation of carotenoids in rice seeds co-expressing OsDXS2 and stPAC was largely enhanced by 3.4-fold relative to the stPAC seeds and 315.3-fold relative to non-transgenic (NT) seeds, while the overexpression of each OsDXS2 or OsDXR caused no positive effect on the accumulation of either carotenoids or chlorophylls in leaves and seeds, suggesting that OsDXS2 functions as a rate-limiting enzyme supplying IPP/DMAPPs to seed carotenoid metabolism, but OsDXR doesn’t in either leaves or seeds. The expressions of OsDXS1, OsPSY1, OsPSY2, and OsBCH2 genes were upregulated regardless of the reductions of chlorophylls and carotenoids in leaves; however, there was no significant change in the expression of most carotenogenic genes, even though there was a 315.3-fold increase in the amount of carotenoid in rice seeds. These non-proportional expression patterns in leaves and seeds suggest that those metabolic changes of carotenoids were associated with overexpression of the OsDXS2, OsDXR and stPAC transgenes, and the capacities of the intermediate biosynthetic enzymes might be much more important for those metabolic alterations than the transcript levels of intermediate biosynthetic genes are. Taken together, we propose a ‘Three Faucets and Cisterns Model’ about the relationship among the rate-limiting enzymes OsDXSs, OsPSYs, and OsBCHs as a “Faucet”, the biosynthetic capacity of intermediate metabolites as a “Cistern”, and the carotenoid accumulations as the content of “Cistern”. Our study suggests that OsDXS2 plays an important role as a rate-limiting enzyme supplying IPP/DMAPPs to the seed-carotenoid accumulation, and rice seed carotenoid metabolism could be largely enhanced without any significant transcriptional alteration of carotenogenic genes. Finally, the “Three Faucets and Cisterns model” presents the extenuating circumstance to elucidate rice seed carotenoid metabolism.

31 citations

Journal ArticleDOI
TL;DR: Results showed that ORV has a strong antibacterial effect against S. aureus, mainly by increasing membrane permeability and inhibiting ATPase when combined with other drugs.
Abstract: Oxyresveratrol (ORV) is a naturally occurring compound found in mulberries that exhibits a wide spectrum of biological activities. However, the underlying mechanism of the action of ORV against the methicillin-resistant S. aureus (MRSA) pathogen has not yet been reported. MRSA is multidrug-resistant, causing skin and other types of infections. The aim of the present study was to examine the antimicrobial activity of ORV and the underlying mechanism of its action on MRSA. The antibacterial activity of ORV was evaluated using a minimum inhibitory concentration (MIC) assay, and the mechanism of its antibacterial action on S. aureus was investigated using a combination of ORV with detergent, ATPase inhibitors and peptidoglycan (PGN). In addition, the survival characteristics and changes in MRSA morphology were monitored using transmission electron microscopy (TEM). The MIC value of ORV against all S. aureus strains was found to be 125 µg/ml. The optical density at 600 nm of each suspension treated using a combination of ORV with Triton X-100, N,N'-dicyclohexylcarbodiimide or sodium azide was reduced by 68.9-89.8% compared with the value upon treatment with ORV alone. In the ORV and PGN combination assay, direct binding of ORV with PGN from S. aureus was evident. Furthermore, TEM examination of MRSA treated with ORV showed alterations in septa formation. In conclusion, these results showed that ORV has a strong antibacterial effect against S. aureus, mainly by increasing membrane permeability and inhibiting ATPase when combined with other drugs.

31 citations

Journal ArticleDOI
TL;DR: The degradation of prochloraz by the pathogen causing rice Bakanae disease, Fusarium fujikuroi, was evaluated by gas liquid chromatography and mass spectrometry analyses as mentioned in this paper.
Abstract: The fungicide prochloraz was subjected to degradation by the pathogen causing rice Bakanae disease, Fusarium fujikuroi, in order to gain an insight into the mechanisms of sensitivity and resistance to the fungicide. Growth-inhibiting assays of pathogens conducted on potato dextrose agar (PDA) plates by a paper-disc agar-diffusion method. Significant growth inhibition of the sensitive strain CF106 was observed at the recommended treatment level of prochloraz, whereas negligible growth inhibition of the resistant strain CF245 was observed at the same treatment level. The strain CF245 was shown to be able to grow on PDA with 500 mg/L of the fungicide, which is significantly higher than its recommended treatment level. Growth-inhibiting assays of pathogens were also conducted in potato dextrose broth (PDB) medium supplemented with prochloraz at different concentrations, measuring their biomass weights over the incubation period. Significant growth inhibition was observed in the strain CF106 at a level of 0.5 mg/L, but negligible growth inhibition was observed in the strain CF245 at the same treatment level with the strain CF106. The strain CF245 could grow in PDB supplemented with 1.0 mg/L of prochloraz. The degradation of prochloraz by the two strains was evaluated by gas liquid chromatography and mass spectrometry analyses. The strain CF245 completely degraded 1.0 mg/L of prochloraz in 5 days after incubation, whereas no degradation of prochloraz was observed by the strain CF106 at the same treatment level. Liquid chromatography Q-TOF MS detected N-(2-(2,4,6-trichlorophenoxy)ethyl)propan-1-amine as a major degradation product of prochloraz by the strain CF245. These results indicated that the degradation of prochloraz may account for the reduced sensitivity of the strain CF245 to prochloraz.

31 citations

Journal ArticleDOI
TL;DR: Improvement of NASH symptoms by sweroside was accompanied with its inhibitory effects on the hepatic NLRP3 inflammasome as hepatic IL-1β and caspase-1 were decreased, contributing to suppression of the NLRP2 inflammaome.
Abstract: Non-alcoholic steatohepatitis (NASH), a type of non-alcoholic fatty liver disease, is characterized as steatosis and inflammation in the liver. NLRP3 inflammasome activation is associated with NASH pathology. We hypothesized that suppressing the NLRP3 inflammasome could be effective in preventing NASH. We searched substances that could inhibit the activation of the NLRP3 inflammasome and identified sweroside as an NLRP3 inhibitor. We investigated whether sweroside can be applied to prevent the pathological symptoms associated with NASH in a methionine–choline-deficient (MCD) diet-induced NASH mouse model. The activation of the NLRP3 inflammasome was determined by detecting the production of caspase-1 and IL-1β from pro-caspase-1 and pro-IL-1β in primary mouse macrophages and mouse liver. In a NASH model, mice were fed an MCD diet for two weeks with daily intraperitoneal injections of sweroside. Sweroside effectively inhibited NLRP3 inflammasome activation in primary macrophages as shown by a decrease in IL-1β and caspase-1 production. In a MCD diet-induced NASH mouse model, intraperitoneal injection of sweroside significantly reduced serum aspartate transaminase and alanine transaminase levels, hepatic immune cell infiltration, hepatic triglyceride accumulation, and liver fibrosis. The improvement of NASH symptoms by sweroside was accompanied with its inhibitory effects on the hepatic NLRP3 inflammasome as hepatic IL-1β and caspase-1 were decreased. Furthermore, sweroside blocked de novo synthesis of mitochondrial DNA in the liver, contributing to suppression of the NLRP3 inflammasome. These results suggest that targeting the NLRP3 inflammasome with sweroside could be beneficially employed to improve NASH symptoms.

31 citations


Authors

Showing all 4390 results

NameH-indexPapersCitations
Richard G. F. Visser8560731019
Sung Woo Kim6031912280
Ill-Min Chung5753912573
Kwang-Jin Kim502447629
Jules Janick453489359
Pil Joon Seo451216799
Sun Yeou Kim441485441
Tae-Jin Yang422099847
Mariadhas Valan Arasu412525545
Hyeran Kim4119814548
Muhammad Rauf411646742
Yong Pyo Lim412268325
Sang Hong Lee399711171
Young Jun Kim362335498
Gi-Ho Sung3616812702
Network Information
Related Institutions (5)
Nanjing Agricultural University
27.3K papers, 546.5K citations

86% related

China Agricultural University
35.1K papers, 727.5K citations

84% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

82% related

Agricultural Research Service
58.6K papers, 2.1M citations

82% related

Chungnam National University
32.1K papers, 543.3K citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202235
2021421
2020449
2019381
2018368