scispace - formally typeset
Search or ask a question

Showing papers by "Rural Development Administration published in 2018"


Journal ArticleDOI
TL;DR: An overview on chemo preventive of ITCs against several types of cancer cell lines and the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer are discussed.
Abstract: Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.

157 citations


Journal ArticleDOI
TL;DR: Data show that microbial shifts and changes in functional capacities of the piglet fecal microbiome resulted in potential reductions in the effects of stress, including dietary changes that occur during weaning, and provides new insights into the piglets gut microbiome that contributes to the growth of the animal.
Abstract: Understanding the composition of the microbial community and its functional capacity during weaning is important for pig production as bacteria play important roles in the pig’s health and growth performance. However, limited information is available regarding the composition and function of the gut microbiome of piglets in early-life. Therefore, we performed 16S rRNA gene and whole metagenome shotgun sequencing of DNA from fecal samples from healthy piglets during weaning to measure microbiome shifts, and to identify the potential contribution of the early-life microbiota in shaping piglet health with a focus on microbial stress responses, carbohydrate and amino acid metabolism. The analysis of 16S rRNA genes and whole metagenome shotgun sequencing revealed significant compositional and functional differences between the fecal microbiome in nursing and weaned piglets. The fecal microbiome of the nursing piglets showed higher relative abundance of bacteria in the genus Bacteroides with abundant gene families related to the utilization of lactose and galactose. Prevotella and Lactobacillus were enriched in weaned piglets with an enrichment for the gene families associated with carbohydrate and amino acid metabolism. In addition, an analysis of the functional capacity of the fecal microbiome showed higher abundances of genes associated with heat shock and oxidative stress in the metagenome of weaned piglets compared to nursing piglets. Overall, our data show that microbial shifts and changes in functional capacities of the piglet fecal microbiome resulted in potential reductions in the effects of stress, including dietary changes that occur during weaning. These results provide us with new insights into the piglet gut microbiome that contributes to the growth of the animal.

138 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the role of mineral nutrition for alleviating Al toxicity in plants to acid soils is presented, where the authors explored phosphorus (P) is more beneficial in plants under P-deficient, and Al toxic conditions and showed that P addition increased root respiration, plant growth, chlorophyll content, and dry matter yield.
Abstract: Aluminum (Al) toxicity is one of the major limitations that inhibit plant growth and development in acidic soils. In acidic soils (pH < 5.0), phototoxic-aluminum (Al3+) rapidly inhibits root growth, and subsequently affects water and nutrient uptake in plants. This review updates the existing knowledge concerning the role of mineral nutrition for alleviating Al toxicity in plants to acid soils. Here, we explored phosphorus (P) is more beneficial in plants under P-deficient, and Al toxic conditions. Exogenous P addition increased root respiration, plant growth, chlorophyll content, and dry matter yield. Calcium (Ca) amendment (liming) is effective for correcting soil acidity, and for alleviating Al toxicity. Magnesium (Mg) is able to prevent Al migration through the cytosolic plasma membrane in root tips. Sulfur (S) is recognized as a versatile element that alleviates several metals toxicity including Al. Moreover, silicon (Si), and other components such as industrial byproducts, hormones, organic acids, polyamines, biofertilizers, and biochars played promising roles for mitigating Al toxicity in plants. Furthermore, this review provides a comprehensive understanding of several new methods and low-cost effective strategies relevant to the exogenous application of mineral nutrition on Al toxicity mitigation. This information would be effective for further improvement of crop plants in acid soils.

134 citations


Journal ArticleDOI
TL;DR: The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes and the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function.
Abstract: Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.

116 citations


Journal ArticleDOI
TL;DR: The results demonstrate that QTL mapping and GBS‐GWAS represent a powerful combined approach for the identification of loci controlling complex traits and identify five candidate genes known to be involved in capsaicinoid biosynthesis.
Abstract: Capsaicinoids are unique compounds produced only in peppers (Capsicum spp.). Several studies using classical quantitative trait loci (QTLs) mapping and genomewide association studies (GWAS) have identified QTLs controlling capsaicinoid content in peppers; however, neither the QTLs common to each population nor the candidate genes underlying them have been identified due to the limitations of each approach used. Here, we performed QTL mapping and GWAS for capsaicinoid content in peppers using two recombinant inbred line (RIL) populations and one GWAS population. Whole-genome resequencing and genotyping by sequencing (GBS) were used to construct high-density single nucleotide polymorphism (SNP) maps. Five QTL regions on chromosomes 1, 2, 3, 4 and 10 were commonly identified in both RIL populations over multiple locations and years. Furthermore, a total of 109 610 SNPs derived from two GBS libraries were used to analyse the GWAS population consisting of 208 C. annuum-clade accessions. A total of 69 QTL regions were identified from the GWAS, 10 of which were co-located with the QTLs identified from the two biparental populations. Within these regions, we were able to identify five candidate genes known to be involved in capsaicinoid biosynthesis. Our results demonstrate that QTL mapping and GBS-GWAS represent a powerful combined approach for the identification of loci controlling complex traits.

101 citations


Journal ArticleDOI
TL;DR: Anderson localization of light from quasi-two-dimensional nanostructures in silk fibres explains how a silkworm designs a nanoarchitectured optical window of resonant tunnelling in the physically closed structures, while suppressing most of transmission in the visible spectrum and emitting thermal radiation.
Abstract: Light in biological media is known as freely diffusing because interference is negligible. Here, we show Anderson light localization in quasi-two-dimensional protein nanostructures produced by silkworms (Bombyx mori). For transmission channels in native silk, the light flux is governed by a few localized modes. Relative spatial fluctuations in transmission quantities are proximal to the Anderson regime. The sizes of passive cavities (smaller than a single fibre) and the statistics of modes (decomposed from excitation at the gain–loss equilibrium) differentiate silk from other diffusive structures sharing microscopic morphological similarity. Because the strong reflectivity from Anderson localization is combined with the high emissivity of the biomolecules in infra-red radiation, silk radiates heat more than it absorbs for passive cooling. This collective evidence explains how a silkworm designs a nanoarchitectured optical window of resonant tunnelling in the physically closed structures, while suppressing most of transmission in the visible spectrum and emitting thermal radiation. Light in biological media is known as freely diffusing because interference is negligible. Here, the authors demonstrate Anderson localization of light from quasi-two-dimensional nanostructures in silk fibres.

93 citations


Journal ArticleDOI
TL;DR: In this article, three classification models, linear discriminant analysis (LDA), partial least squares discriminant analyses (PLS-DA), and support vector machines (SVM), coupled with some pre-processing methods, were tested to determine the most suitable among them.
Abstract: Knowledge of the viability status of seeds before sowing is important to farmers (for yield prediction) and to seed companies (for seed warrant determination). However, a diversity of factors collaborate to reduce or completely render seeds non-viable both during pre- and post-harvest operations. Many methods have been employed to detect seed viability, but perhaps one of the promising is hyperspectral imaging. This is because of its high speed and ability to non-destructively detect the internal conditions of seeds, making it the perfect solution especially for industrial sorting applications. This study was conducted to determine suitable classification model(s) for classifying corn seeds based on their viability using hyperspectral imaging. For this study, 600 corn samples were selected, and half of them treated using microwave heat treatment while the rest were kept as the control group. Hyperspectral imaging data from all the samples were then collected using a shortwave infrared hyperspectral camera with a range of 1000–2500 nm. Three classification models, linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), and support vector machines (SVM), coupled with some pre-processing methods, were tested to determine the most suitable among them. The SVM model resulted in the highest spectral classification of up to 100%, which is 5% better than the previous research PLS based method. The model also produced flawless classification images, suggesting that hyperspectral imaging can be used to accurately classify corn based on viability. In summary, the results of this study serve as a major step towards development of a fast and non-destructive large-scale hyperspectral-based sorting system for corn viability determination.

78 citations


Journal ArticleDOI
TL;DR: Exome sequencing is used as a complexity reduction strategy to detect mutations associated with a target phenotype in a segregating wheat EMS population and can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.
Abstract: Forward genetic screens of induced mutant plant populations are powerful tools to identify genes underlying phenotypes of interest. Using traditional techniques, mapping causative mutations from forward screens is a lengthy, multi-step process, requiring the identification of a broad genetic region followed by candidate gene sequencing to characterize the causal variant. Mapping by whole genome sequencing accelerates the identification of causal mutations by simultaneously defining a mapping region and providing information on the induced genetic variants. In wheat, although the availability of a high-quality draft genome assembly facilitates mapping and mutation calling, whole genome resequencing remains prohibitively expensive due to its large genome. In the current study, we used exome sequencing as a complexity reduction strategy to detect mutations associated with a target phenotype. In a segregating wheat EMS population, we identified a clear peak region on chromosome arm 4BS associated with increased plant height. Although none of the significant SNPs seemed causative for the mutant phenotype, they were sufficient to identify a linked ~ 1.9 Mb deletion encompassing nine genes. These genes included Rht-B1, which is known to have a strong effect on plant height and is a strong candidate for the observed phenotype. We performed simulation experiments to determine the impacts of sequencing depth and bulk size and discuss the importance of considering each factor when designing mapping-by-sequencing experiments in wheat. This approach can accelerate the identification of candidate causal point mutations or linked deletions underlying important phenotypes.

67 citations


Journal ArticleDOI
TL;DR: The genetic potential of three important legume crops, alfalfa, soybean, and cowpea, are assessed and the application of integrative approaches to achieve adequate forage production amid the unpredictable climatic conditions is suggested.
Abstract: Substantial improvements in access to food and increased purchasing power are driving many people toward consuming nutrition-rich foods causing an unprecedented demand for protein food worldwide, which is expected to rise further. Forage legumes form an important source of feed for livestock and have potential to provide a sustainable solution for food and protein security. Currently, alfalfa is a commercially grown source of forage and feed in many countries. However, soybean and cowpea also have the potential to provide quality forage and fodder for animal use. The cultivation of forage legumes is under threat from changing climatic conditions, indicating the need for breeding cultivars that can sustain and acclimatize to the negative effects of climate change. Recent progress in genetic and genomic tools have facilitated the identification of quantitative trait loci and genes/alleles that can aid in developing forage cultivars through marker-assisted or genomic selection. Furthermore, transgenic technology can be utilized to manipulate the genetic makeup of plants to improve forage digestibility for better animal performance. In this article, we assess the genetic potential of three important legume crops, alfalfa, soybean, and cowpea in supplying quality fodder and feed for livestock. In addition, we examine the impact of climate change on forage quality and discuss efforts made in enhancing the adaptation of the plant to the abiotic stress conditions. Subsequently, we suggest the application of integrative approaches that can be employed to achieve adequate forage production amid the unpredictable climatic conditions.

66 citations


Journal ArticleDOI
TL;DR: Under nutrient deficit conditions, addition of sodium bicarbonate significantly increased the biomass, carotenoids including β-carotene and lutein, lipid, and fatty acid content with concurrent enhancement of the activities of nutrient assimilatory and carbonic anhydrase enzymes.
Abstract: The unicellular marine alga Dunaliella salina is a most interesting green cell factory for the production of carotenes and lipids under extreme environment conditions. However, the culture conditions and their productivity are the major challenges faced by researchers which still need to be addressed. In this study, we investigated the effect of bicarbonate amendment on biomass, photosynthetic activity, biochemical constituents, nutrient uptake and antioxidant response of D. salina during macronutrient deficit conditions (N−, P− and S−). Under nutrient deficit conditions, addition of sodium bicarbonate (100 mM) significantly increased the biomass, carotenoids including β-carotene and lutein, lipid, and fatty acid content with concurrent enhancement of the activities of nutrient assimilatory and carbonic anhydrase enzymes. Maximum accumulation of carotenoid especially β-carotene (192.8 ± 2.11 µg/100 mg) and lipids (53.9%) was observed on addition of bicarbonate during nitrate deficiency compared to phosphate and sulphate deficiency. Supplementation of bicarbonate reduced the oxidative stress caused by ROS, lowered lipid peroxidation damage and improved the activities of antioxidant enzymes (SOD, CAT and APX) in D. salina cultures under nutrient stress.

62 citations


Journal ArticleDOI
TL;DR: A volatile organic compound based geographical discrimination method using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS) to discriminate rice samples from Korea and China and 12 discriminatory biomarkers were found.

Journal ArticleDOI
TL;DR: It is hypothesized that rapid evolution of prolamin and resistance gene families after the separation of the three wheat genomes is attributed to the co-evolution of the two gene families dispersed within a high recombination region.
Abstract: Improving end-use quality and disease resistance are important goals in wheat breeding. The genetic loci controlling these traits are highly complex, consisting of large families of prolamin and resistance genes with members present in all three homeologous A, B, and D genomes in hexaploid bread wheat. Here, orthologous regions harboring both prolamin and resistance gene loci were reconstructed and compared to understand gene duplication and evolution in different wheat genomes. Comparison of the two orthologous D regions from the hexaploid wheat Chinese Spring and the diploid progenitor Aegilops tauschii revealed their considerable difference due to the presence of five large structural variations with sizes ranging from 100 kb to 2 Mb. As a result, 44% of the Ae. tauschii and 71% of the Chinese Spring sequences in the analyzed regions, including 79 genes, are not shared. Gene rearrangement events, including differential gene duplication and deletion in the A, B, and D regions, have resulted in considerable erosion of gene collinearity in the analyzed regions, suggesting rapid evolution of prolamin and resistance gene families after the separation of the three wheat genomes. We hypothesize that this fast evolution is attributed to the co-evolution of the two gene families dispersed within a high recombination region. The identification of a full set of prolamin genes facilitated transcriptome profiling and revealed that the A genome contributes the least to prolamin expression because of its smaller number of expressed intact genes and their low expression levels, while the B and D genomes contribute similarly.

Journal ArticleDOI
TL;DR: The data suggest that auriculasin targets ROS-mediated caspase-independent pathways and suppresses PI3K/AKT/mTOR signaling, which leads to apoptosis and decreased tumor growth.

Journal ArticleDOI
07 Mar 2018-Toxins
TL;DR: Chronic ingestion of high doses of Deoxynivalenol and ZEN alters the immune response and causes organs damage, and might be associated with various diseases in pigs.
Abstract: Background: Deoxynivalenol (DON) and zearalenone (ZEN) are common food contaminants produced by Fusarium sp. Mycotoxins are a potential health hazard because of their toxicological effects on both humans and farmed animals. Methods: We analyzed three groups of pigs: a control group (fed a standard diet), and the DON and ZEN groups, fed a diet containing 8 mg/kg DON and 0.8 mg/kg ZEN respectively, for four weeks. Results: DON and ZEN exposure decreased body weight (BW), average daily feed intake (ADFI), food conversion rate (FCR), and the serum levels of immunoglobulin (Ig)G and IgM. The total antioxidant levels significantly decreased in serum and increased in urine samples of both treatment groups. Additionally, DON and ZEN exposure increased serotonin levels in urine. Hematological parameters were not affected by the investigated toxins. Microscopic lesions were evident in sections of kidneys from either treatment group: we found sporadic interstitial nephritis in the DON group and renal glomerulus atrophy in the ZEN group. The expression levels of inflammatory cytokines and chemokine marker genes were reduced in tissues from DON- and ZEN-exposed pigs. Conclusions: chronic ingestion of high doses of DON and ZEN alters the immune response and causes organs damage, and might be associated with various diseases in pigs.

Journal ArticleDOI
TL;DR: It is believed that sound wave treatment is a new trigger to help protect plants against unfavorable conditions and to maintain plant fitness.
Abstract: Sound is ubiquitous in nature. Recent evidence supports the notion that naturally occurring and artificially generated sound waves contribute to plant robustness. New information is emerging about the responses of plants to sound and the associated downstream signaling pathways. Here, beyond chemical triggers which can improve plant health by enhancing plant growth and resistance, we provide an overview of the latest findings, limitations, and potential applications of sound wave treatment as a physical trigger to modulate physiological traits and to confer an adaptive advantage in plants. We believe that sound wave treatment is a new trigger to help protect plants against unfavorable conditions and to maintain plant fitness.

Journal ArticleDOI
TL;DR: In this paper, the authors present and assesses VOC removal mechanisms that use plants and their associated microorganisms as well as the factors that influence the rate and efficiency of VOC extraction.
Abstract: Air quality in homes, offices, and other indoor spaces has become a major health, economic, and social concern. A plant-based removal system for volatile organic compounds (VOCs) appears to be a low-cost, environment-friendly solution for improving indoor air quality. This review presents and assesses VOC removal mechanisms that use plants and their associated microorganisms as well as the factors that influence the rate and efficiency of VOC removal. To increase removal efficiency, it is important to have a thorough understanding of the mechanisms of VOC degradation by plants and their associated microorganisms. The potential of plants and their associated microorganisms, whether present in pots or forced-air systems, to remove VOCs from indoor environments have been supported by a number of studies. Variations in removal efficiency depend on the plant species used, the chemical properties of the volatiles in question, and a cross-section of other internal and external factors. It is thus critical to select the right plants and use methods that reflect in vivo conditions. Indoor plants with superior air-purifying abilities have been extensively studied; however, the low rates of VOC removal efficiency in interior environments entail the need of more studies. For instance, factors that modulate VOC removal by plants, such as air circulation rate, light intensity, moisture status, and season need to be explored. Improving the efficiency of plants and their associated microorganisms for VOC remediation of indoor air is necessary to ensure sustainable and healthy indoor environments.

Journal ArticleDOI
TL;DR: The novel recessive gene xa44(t) conferring resistance to BB was identified and the expression level of the gene was confirmed through qRT-PCR analysis and the results will be useful to further understand BB resistance mechanisms and provide new sources of resistance, together with DNA markers for MAS breeding to improve BB resistance in rice.
Abstract: Using QTL analysis and fine mapping, the novel recessive gene xa44(t) conferring resistance to BB was identified and the expression level of the gene was confirmed through qRT-PCR analysis. Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major factor causing rice yield loss in most rice-cultivating countries, especially in Asia. The deployment of cultivars with resistance to BB is the most effective method to control the disease. However, the evolution of new Xoo or pathotypes altered by single-gene-dependent mutations often results in breakdown of resistance. Thus, efforts to identify novel R-genes with sustainable BB resistance are urgently needed. In this study, we identified three quantitative trait loci (QTLs) on chromosomes 1, 4, and 11, from an F2 population of 493 individuals derived from a cross between IR73571-3B-11-3-K3 and Ilpum using a 7K SNP chip. Of these QTLs, one major QTL, qBB_11, on chromosome 11 explained 61.58% of the total phenotypic variance in the population, with an LOD value of 113.59, based on SNPs 11964077 and 11985463. The single major R-gene, with recessive gene action, was designated xa44(t) and was narrowed down to a 120-kb segment flanked within 28.00 Mbp to 28.12 Mbp. Of nine ORFs present in the target region, two ORFs revealed significantly different expression levels of the candidate genes. These candidate genes (Os11g0690066 and Os11g0690466) are described as “serine/threonine protein kinase domain containing protein” and “hypothetical protein,” respectively. The results will be useful to further understand BB resistance mechanisms and provide new sources of resistance, together with DNA markers for MAS breeding to improve BB resistance in rice.

Journal ArticleDOI
TL;DR: A handheld device that is capable of simplifying multistep assays to perform sensitive detection of foodborne pathogens is presented and the limit of detection for each bacterium was characterized and the detection of bacteria from contaminated fresh lettuces was demonstrated.
Abstract: This paper presents a handheld device that is capable of simplifying multistep assays to perform sensitive detection of foodborne pathogens. The device is capable of multiplexed detection of Escherichia coli (E. coli) O157:H7, Salmonella Typhimurium (S. Typhimurium), Staphylococcus aureus, and Bacillus cereus. The limit of detection for each bacterium was characterized, and then, the detection of bacteria from contaminated fresh lettuces was demonstrated for two representative foodborne pathogens. We employed a sample pretreatment protocol to recover and concentrate target bacteria from contaminated lettuces, which can detect 1.87 × 104 CFU of E. coli O157:H7 and 1.47 × 104 CFU of S. Typhimurium/1 g of lettuce without an enrichment process. Lastly, we demonstrated that the limit of detection can be reduced to 1 CFU of E. coli O157:H7 and 1 CFU of S. Typhimurium/1 g of lettuce by including a 6 h enrichment of contaminated lettuces in growth media before pretreatment.

Journal ArticleDOI
TL;DR: The potential of various biochars to remove 15 odorous volatile organic compounds emitted from swine manure via laboratory sorption experiments was investigated in this paper, using pyrolyzing.
Abstract: The potential of various biochars to remove 15 odorous volatile organic compounds emitted from swine manure were investigated via laboratory sorption experiments. Nine biochars made from pyrolyzing...

Journal ArticleDOI
TL;DR: The results showed that the change in microorganisms exerts an influence on the quality and safety of dry aged beef, and the study identified that fungi may play an important role in the palatability and flavor development ofdry aged beef.
Abstract: Beef was dry aged for 40-60 days under controlled environmental conditions in a refrigerated room with a relative humidity of 75%-80% and air-flow. To date, there is little information on the microbial diversity and characteristics of dry aged beef. In this study, we explored the effect of change in meat microorganisms on dry aged beef. Initially, the total bacteria and LAB were significantly increased for 50 days during all dry aging periods. There was an absence of representative foodborne pathogens as well as coliforms. Interestingly, fungi including yeast and mold that possess specific features were observed during the dry aging period. The 5.8S rRNA sequencing results showed that potentially harmful yeasts/molds (Candida sp., Cladosporium sp., Rhodotorula sp.) were present at the initial point of dry aging and they disappeared with increasing dry aging time. Interestingly, Penicillium camemberti and Debaryomyces hansenii used for cheese manufacturing were observed with an increase in the dry aging period. Taken together, our results showed that the change in microorganisms exerts an influence on the quality and safety of dry aged beef, and our study identified that fungi may play an important role in the palatability and flavor development of dry aged beef.

Journal ArticleDOI
TL;DR: FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%.
Abstract: The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds.; Results: Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables.; Conclusions: The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry.; © 2017 Society of Chemical Industry.

Journal ArticleDOI
TL;DR: This work analyzes genome sequence data from 13 Korean japonica rice varieties and discovered 740,566 single nucleotide polymorphisms (SNPs), which would enable the development of sufficient SNP markers for mapping and the identification of useful genes present in the cultivar group.
Abstract: Genome resequencing by next-generation sequencing technology can reveal numerous single nucleotide polymorphisms (SNPs) within a closely-related cultivar group, which would enable the development of sufficient SNP markers for mapping and the identification of useful genes present in the cultivar group. We analyzed genome sequence data from 13 Korean japonica rice varieties and discovered 740,566 SNPs. The SNPs were distributed at 100-kbp intervals throughout the rice genome, although the SNP density was uneven among the chromosomes. Of the 740,566 SNPs, 1,014 SNP sites were selected on the basis of polymorphism information content (PIC) value higher than 0.4 per 200-kbp interval, and 506 of these SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers. The 506 KASP markers were tested for genotyping with the 13 sequenced Korean japonica rice varieties, and polymorphisms were detected in 400 KASP markers (79.1%) which would be suitable for genetic analysis and molecular breeding. Additionally, a genetic map comprising 205 KASP markers was successfully constructed with 188 F2 progenies derived from a cross between the varieties, Junam and Nampyeong. In a phylogenetic analysis with 81 KASP markers, 13 Korean japonica varieties showed close genetic relationships and were divided into three groups. More KASP markers are being developed and these markers will be utilized in gene mapping, quantitative trait locus (QTL) analysis, marker-assisted selection and other strategies relevant to crop improvement.

Journal ArticleDOI
TL;DR: An on-packaging colorimetric sensor label that can detect the aldehyde emission of apples based on Methyl Red was developed and showed a similar tendency to the changes in the parameters of the sensory test, soluble solid content, and hardness.

Journal ArticleDOI
TL;DR: The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM) to answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.
Abstract: The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involve in the transport of water and solutes in roots – apoplast, symplast and transcellular paths. The role of aquaporins, which facilitate water flows through the transcellular path, and root apoplast were examined in terms of the composite transport model. The contribution of the plasma membrane bound aquaporins for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional composite transport model adding resistances that arrange in series (epidermis, exodermis, mid cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of composite transport model for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

Journal ArticleDOI
TL;DR: The relative crystallinity and gelatinization enthalpy of cowpea starches were greater than those of mungbean starches, and Seowon in the cowpeA starches and Sohyun in mung bean starches had higher gel hardness than other cultivars.

Journal ArticleDOI
TL;DR: It is demonstrated that licochalcone A, a chalconoid isolated from the root of Glycyrrhiza inflate, was an effective inhibitor for P. acnes‐induced NLRP3 inflammasome activation, providing a new paradigm for the development of anti‐acne therapy via targeting NLRP2 inflammaome.
Abstract: Activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome by Propionibacterium acnes (P. acnes) is critical for inducing inflammation and aggravating the development of acne lesions. We searched for available small-molecule inhibitors of the NLRP3 inflammasome that could be topically administered for the treatment of acne. We found that licochalcone A, a chalconoid isolated from the root of Glycyrrhiza inflate, was an effective inhibitor for P. acnes-induced NLRP3 inflammasome activation. Licochalcone A blocked P. acnes-induced production of caspase-1(p10) and IL-1β in primary mouse macrophages and human SZ95 sebocytes, indicating the suppression of NLRP3 inflammasome. Licochalcone A suppressed P. acnes-induced ASC speck formation and mitochondrial reactive oxygen species. Topical application of licochalcone A to mouse ear skin attenuated P. acnes-induced skin inflammation as shown by histological assessment, ear thickness measurement, and inflammatory gene expression. Licochalcone A reduced caspase-1 activity and IL-1β production in mouse ear injected with P. acnes. This study demonstrated that licochalcone A is effective in the control of P. acnes-induced skin inflammation as an efficient inhibitor for NLRP3 inflammasome. Our study provides a new paradigm for the development of anti-acne therapy via targeting NLRP3 inflammasome.

Journal ArticleDOI
01 Mar 2018-Virology
TL;DR: RNA sequencing for in-depth molecular characterization of the transcriptional changes associated with the development of distinct symptoms induced by tomato chlorosis virus (ToCV) and tomato yellow leaf curl virus (TYLCV) in tomato revealed that ToCV and TYLCV induced distinct transcriptionalChanges in tomato.

Journal ArticleDOI
TL;DR: In this article, the authors developed a process-based rice yield estimation model by integrating an assimilate allocation module into the satellite remote sensing-derived and biophysical processbased Breathing Earth System Simulator (BESS).

Journal ArticleDOI
TL;DR: Results suggest that F. fujikuroi can produce high levels of fumonisins similar to F. verticillioides and F. proliferatum, and that each species was resolved as genealogically exclusive in the ML tree.

Journal ArticleDOI
TL;DR: The authors' results can contribute to breeding pigs with better IMF and therefore, producing pork with better sensory qualities by estimating the heritability of intramuscular fat content (IMF) and single nucleotide polymorphisms and genes related to pig IMF.
Abstract: OBJECTIVE The aim of this study is to identify single nucleotide polymorphisms (SNPs) and genes related to pig IMF and estimate the heritability of intramuscular fat content (IMF). METHODS Genome-wide association study (GWAS) on 704 inbred Berkshires was performed for IMF. To consider the inbreeding among samples, associations of the SNPs with IMF were tested as random effects in a mixed linear model using the genetic relationship matrix by GEMMA. Significant genes were compared with reported pig IMF quantitative trait loci (QTL) regions and functional classification of the identified genes were also performed. Heritability of IMF was estimated by GCTA tool. RESULTS Total 365 SNPs were found to be significant from a cutoff of p-value <0.01 and the 365 significant SNPs were annotated across 120 genes. Twenty five genes were on pig IMF QTL regions. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator, forkhead box protein O1, ectodysplasin A receptor, ring finger protein 149, cluster of differentiation, tyrosine-protein phosphatase non-receptor type 1, SRY (sex determining region Y)-box 9 (SOX9), MYC proto-oncogene, and macrophage migration inhibitory factor were related to mitogen-activated protein kinase pathway, which regulates the differentiation to adipocytes. These genes and the genes mapped on QTLs could be the candidate genes affecting IMF. Heritability of IMF was estimated as 0.52, which was relatively high, suggesting that a considerable portion of the total variance of IMF is explained by the SNP information. CONCLUSION Our results can contribute to breeding pigs with better IMF and therefore, producing pork with better sensory qualities.