scispace - formally typeset
Search or ask a question

Showing papers by "Rural Development Administration published in 2009"


Journal ArticleDOI
TL;DR: Results seem to indicate that Xinmu No. 1 cultivar's tolerance to salt or drought stresses during germination is associated with enhanced activity of antioxidant enzymes, which highlights the importance of antioxidants enzymes in the establishment of alfalfa seedlings under drought and salinity conditions typical of desertification.

468 citations


Journal ArticleDOI
01 Apr 2009-Genetics
TL;DR: Results indicate that the presence of these two genes is required for rice Pi5-mediated resistance to M. oryzae, and sequence analysis of this genomic region identified two candidate genes,Pi5-1 and Pi5, which encode proteins carrying three motifs characteristic of R genes.
Abstract: Rice blast, caused by the fungus Magnaporthe oryzae, is one of the most devastating diseases of rice. To understand the molecular basis of Pi5-mediated resistance to M. oryzae, we cloned the resistance (R) gene at this locus using a map-based cloning strategy. Genetic and phenotypic analyses of 2014 F2 progeny from a mapping population derived from a cross between IR50, a susceptible rice cultivar, and the RIL260 line carrying Pi5 enabled us to narrow down the Pi5 locus to a 130-kb interval. Sequence analysis of this genomic region identified two candidate genes, Pi5-1 and Pi5-2, which encode proteins carrying three motifs characteristic of R genes: an N-terminal coiled-coil (CC) motif, a nucleotide-binding (NB) domain, and a leucine-rich repeat (LRR) motif. In genetic transformation experiments of a susceptible rice cultivar, neither the Pi5-1 nor the Pi5-2 gene was found to confer resistance to M. oryzae. In contrast, transgenic rice plants expressing both of these genes, generated by crossing transgenic lines carrying each gene individually, conferred Pi5-mediated resistance to M. oryzae. Gene expression analysis revealed that Pi5-1 transcripts accumulate after pathogen challenge, whereas the Pi5-2 gene is constitutively expressed. These results indicate that the presence of these two genes is required for rice Pi5-mediated resistance to M. oryzae.

258 citations


Journal ArticleDOI
TL;DR: Findings indicate that KCS20 and KCS2/DAISY are functionally redundant in the two-carbon elongation to C(22) VLCFA that is required for cuticular wax and root suberin biosynthesis, however, their expression is differentially controlled under osmotic stress conditions.
Abstract: Very-long-chain fatty acids (VLCFAs) are essential precursors of cuticular waxes and aliphatic suberins in roots. The first committed step in VLCFA biosynthesis is condensation of C(2) units to an acyl CoA by 3-ketoacyl CoA synthase (KCS). In this study, two KCS genes, KCS20 and KCS2/DAISY, that showed higher expression in stem epidermal peels than in stems were isolated. The relative expression of KCS20 and KCS2/DAISY transcripts was compared among various Arabidopsis organs or tissues and under various stress conditions, including osmotic stress. Although the cuticular waxes were not significantly altered in the kcs20 and kcs2/daisy-1 single mutants, the kcs20 kcs2/daisy-1 double mutant had a glossy green appearance due to a significant reduction of the amount of epicuticular wax crystals on the stems and siliques. Complete loss of KCS20 and KCS2/DAISY decreased the total wax content in stems and leaves by 20% and 15%, respectively, and an increase of 10-34% was observed in transgenic leaves that over-expressed KCS20 or KCS2/DAISY. The stem wax phenotype of the double mutant was rescued by expression of KSC20. In addition, the kcs20 kcs2/daisy-1 roots exhibited growth retardation and abnormal lamellation of the suberin layer in the endodermis. When compared with the single mutants, the roots of kcs20 kcs2/daisy-1 double mutantss exhibited significant reduction of C(22) and C(24) VLCFA derivatives but accumulation of C(20) VLCFA derivatives in aliphatic suberin. Taken together, these findings indicate that KCS20 and KCS2/DAISY are functionally redundant in the two-carbon elongation to C(22) VLCFA that is required for cuticular wax and root suberin biosynthesis. However, their expression is differentially controlled under osmotic stress conditions.

257 citations


Journal ArticleDOI
TL;DR: It appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.
Abstract: Brassica rapa is one of the most economically important vegetable crops worldwide. Owing to its agronomic importance and phylogenetic position, B. rapa provides a crucial reference to understand polyploidy-related crop genome evolution. The high degree of sequence identity and remarkably conserved genome structure between Arabidopsis and Brassica genomes enables comparative tiling sequencing using Arabidopsis sequences as references to select the counterpart regions in B. rapa, which is a strong challenge of structural and comparative crop genomics. We assembled 65.8 megabase-pairs of non-redundant euchromatic sequence of B. rapa and compared this sequence to the Arabidopsis genome to investigate chromosomal relationships, macrosynteny blocks, and microsynteny within blocks. The triplicated B. rapa genome contains only approximately twice the number of genes as in Arabidopsis because of genome shrinkage. Genome comparisons suggest that B. rapa has a distinct organization of ancestral genome blocks as a result of recent whole genome triplication followed by a unique diploidization process. A lack of the most recent whole genome duplication (3R) event in the B. rapa genome, atypical of other Brassica genomes, may account for the emergence of B. rapa from the Brassica progenitor around 8 million years ago. This work demonstrates the potential of using comparative tiling sequencing for genome analysis of crop species. Based on a comparative analysis of the B. rapa sequences and the Arabidopsis genome, it appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.

201 citations


Journal ArticleDOI
TL;DR: Rice ( Oryza sativa ) is the reference genome for the grasses, including cereals, and the complete genome sequence lays the foundation for comparative genomics to the other grasses based on genome structure and individual gene function.
Abstract: Rice ( Oryza sativa ) is the reference genome for the grasses, including cereals. The complete genome sequence lays the foundation for comparative genomics to the other grasses based on genome structure and individual gene function ([Devos, 2005][1]; [International Rice Genome Sequencing Project,

188 citations


Journal ArticleDOI
TL;DR: The considerable variation that the authors observed, even between the different versions of the same Brassica genome, for gene fragments and annotated putative genes suggest that the concept of the pan-genome might be particularly appropriate when considering Brassica genomes.
Abstract: Homoeologous regions of Brassica genomes were analyzed at the sequence level. These represent segments of the Brassica A genome as found in Brassica rapa and Brassica napus and the corresponding segments of the Brassica C genome as found in Brassica oleracea and B. napus. Analysis of synonymous base substitution rates within modeled genes revealed a relatively broad range of times (0.12 to 1.37 million years ago) since the divergence of orthologous genome segments as represented in B. napus and the diploid species. Similar, and consistent, ranges were also identified for single nucleotide polymorphism and insertion-deletion variation. Genes conserved across the Brassica genomes and the homoeologous segments of the genome of Arabidopsis thaliana showed almost perfect collinearity. Numerous examples of apparent transduplication of gene fragments, as previously reported in B. oleracea, were observed in B. rapa and B. napus, indicating that this phenomenon is widespread in Brassica species. In the majority of the regions studied, the C genome segments were expanded in size relative to their A genome counterparts. The considerable variation that we observed, even between the different versions of the same Brassica genome, for gene fragments and annotated putative genes suggest that the concept of the pan-genome might be particularly appropriate when considering Brassica genomes.

177 citations


Journal ArticleDOI
TL;DR: Phylogenetic and evolutionary analyses suggest that relatively higher relaxation of selective constraints on the TNL group after the old duplication event resulted in greater accumulation of TNLs than CNLs in both Arabidopsis and Brassica genomes.
Abstract: Nucleotide-binding site (NBS)-encoding resistance genes are key plant disease-resistance genes and are abundant in plant genomes, comprising up to 2% of all genes. The availability of genome sequences from several plant models enables the identification and cloning of NBS-encoding genes from closely related species based on a comparative genomics approach. In this study, we used the genome sequence of Brassica rapa to identify NBS-encoding genes in the Brassica genome. We identified 92 non-redundant NBS-encoding genes [30 CC-NBS-LRR (CNL) and 62 TIR-NBS-LRR (TNL) genes] in approximately 100 Mbp of B. rapa euchromatic genome sequence. Despite the fact that B. rapa has a significantly larger genome than Arabidopsis thaliana due to a recent whole genome triplication event after speciation, B. rapa contains relatively small number of NBS-encoding genes compared to A. thaliana, presumably because of deletion of redundant genes related to genome diploidization. Phylogenetic and evolutionary analyses suggest that relatively higher relaxation of selective constraints on the TNL group after the old duplication event resulted in greater accumulation of TNLs than CNLs in both Arabidopsis and Brassica genomes. Recent tandem duplication and ectopic deletion are likely to have played a role in the generation of novel Brassica lineage-specific resistance genes.

140 citations


Journal ArticleDOI
04 Apr 2009-Planta
TL;DR: Host-mediated expression of parasite genes as tandem inverted repeats was investigated as a means to abrogate the formation of mature Heterodera glycines (soybean cyst nematode) female cysts during its infection of Glycine max ( soybean).
Abstract: Host-mediated (hm) expression of parasite genes as tandem inverted repeats was investigated as a means to abrogate the formation of mature Heterodera glycines (soybean cyst nematode) female cysts during its infection of Glycine max (soybean). A Gateway®-compatible hm plant transformation system was developed specifically for these experiments in G. max. Three steps then were taken to identify H. glycines candidate genes. First, a pool of 150 highly conserved H. glycines homologs of genes having lethal mutant phenotypes or phenocopies from the free living nematode Caenorhabditis elegans were identified. Second, annotation of those 150 genes on the Affymetrix® soybean GeneChip® allowed for the identification of a subset of 131 genes whose expression could be monitored during the parasitic phase of the H. glycines life cycle. Third, a microarray analyses identified a core set of 32 genes with induced expression (>2.0-fold, log base 2) during the parasitic stages of infection. H. glycines homologs of small ribosomal protein 3a and 4 (Hg-rps-3a [accession number CB379877] and Hg-rps-4 [accession number CB278739]), synaptobrevin (Hg-snb-1 [accession number BF014436]) and a spliceosomal SR protein (Hg-spk-1 [accession number BI451523.1]) were tested for functionality in hm expression studies. Effects on H. glycines development were observed 8 days after infection. Experiments demonstrated that 81–93% fewer females developed on transgenic roots containing the genes engineered as tandem inverted repeats. The effect resembles RNA interference. The methodology has been used here as an alternative approach to engineer resistance to H. glycines.

126 citations


Journal ArticleDOI
10 Oct 2009-Virology
TL;DR: Recombination as well as mutation is an important evolutionary process in the genetic diversification of SMV population and it appears that recombination might contribute to overcome host resistance in SMV-soybean pathosystem.

119 citations


Journal ArticleDOI
TL;DR: With the isolation and further characterization of the endogenous genes, health‐beneficial vegetables or desirable animal feed crops could be developed by metabolically engineering the glucosinolate pathway.
Abstract: Glucosinolates play important roles in plant defense against herbivores and microbes, as well as in human nutrition. Some glucosinolate-derived isothiocyanate and nitrile compounds have been clinically proven for their anticarcinogenic activity. To better understand glucosinolate biosynthesis in Brassica rapa, we conducted a comparative genomics study with Arabidopsis thaliana and identified total 56 putative biosynthetic and regulator genes. This established a high colinearity in the glucosinolate biosynthesis pathway between Arabidopsis and B. rapa. Glucosinolate genes in B. rapa share 72–94% nucleotide sequence identity with the Arabidopsis orthologs and exist in different copy numbers. The exon/intron split pattern of B. rapa is almost identical to that of Arabidopsis, although inversion, insertion, deletion and intron size variations commonly occur. Four genes appear to be nonfunctional as a result of the presence of a frame shift mutation and retrotransposon insertion. At least 12 paralogs of desulfoglucosinolate sulfotransferase were found in B. rapa, whereas only three were found in Arabidopsis. The expression of those paralogs was not tissue-specific but varied greatly depending on B. rapa tissue types. Expression was also developmentally regulated in some paralogs but not in other paralogs. Most of the regulator genes are present as triple copies. Accordingly, glucosinolate synthesis and regulation in B. rapa appears to be more complex than that of Arabidopsis. With the isolation and further characterization of the endogenous genes, health-beneficial vegetables or desirable animal feed crops could be developed by metabolically engineering the glucosinolate pathway.

110 citations


Journal ArticleDOI
TL;DR: A second generation reference linkage map for B. rapa was developed, which was aligned unambiguously to the B.Rapa cytogenetic map and will serve as a basis for integrating the genetic, physical, and chromosome maps of the BrGSP, as well as for studies on polyploidization, speciation, and genome duplication in the genus Brassica.
Abstract: In view of the immense value of Brassica rapa in the fields of agriculture and molecular biology, the multinational Brassica rapa Genome Sequencing Project (BrGSP) was launched in 2003 by five countries. The developing BrGSP has valuable resources for the community, including a reference genetic map and seed BAC sequences. Although the initial B. rapa linkage map served as a reference for the BrGSP, there was ambiguity in reconciling the linkage groups with the ten chromosomes of B. rapa. Consequently, the BrGSP assigned each of the linkage groups to the project members as chromosome substitutes for sequencing. We identified simple sequence repeat (SSR) motifs in the B. rapa genome with the sequences of seed BACs used for the BrGSP. By testing 749 amplicons containing SSR motifs, we identified polymorphisms that enabled the anchoring of 188 BACs onto the B. rapa reference linkage map consisting of 719 loci in the 10 linkage groups with an average distance of 1.6 cM between adjacent loci. The anchored BAC sequences enabled the identification of 30 blocks of conserved synteny, totaling 534.9 cM in length, between the genomes of B. rapa and Arabidopsis thaliana. Most of these were consistent with previously reported duplication and rearrangement events that differentiate these genomes. However, we were able to identify the collinear regions for seven additional previously uncharacterized sections of the A genome. Integration of the linkage map with the B. rapa cytogenetic map was accomplished by FISH with probes representing 20 BAC clones, along with probes for rDNA and centromeric repeat sequences. This integration enabled unambiguous alignment and orientation of the maps representing the 10 B. rapa chromosomes. We developed a second generation reference linkage map for B. rapa, which was aligned unambiguously to the B. rapa cytogenetic map. Furthermore, using our data, we confirmed and extended the comparative genome analysis between B. rapa and A. thaliana. This work will serve as a basis for integrating the genetic, physical, and chromosome maps of the BrGSP, as well as for studies on polyploidization, speciation, and genome duplication in the genus Brassica.

Journal ArticleDOI
TL;DR: In this article, food waste is used as an alternative substrate for ethanol production through laboratory experiments, and the effect of salt, which is inherently included in food waste, on ethanol fermentation is evaluated.
Abstract: Although food waste (FW) can serve as a valuable substrate containing large amounts of organic materials such as soluble sugar, starch, and cellulose, it is recognized as an environmental pollutant, and the hydrolysis of solids in FW still serves as a rate-limiting step in its biological processes. To evaluate a new potential application of FW as an alternative substrate for ethanol production through laboratory experiments, we investigated FW hydrolysis by using individual commercial enzymes and their mixtures; batch ethanol fermentation by Saccharomyces cerevisiae; and the effect of salt, which is inherently included in FW, on ethanol fermentation. A comparison of the glucose yields of the FW broth pretreated with amyloglucosidase, carbohydrase, and a mixture of both enzymes revealed that a higher glucose yield was obtained when the enzyme mixture was used (0.46 g g−1 of dry FW) than when amyloglucosidase (0.41) or carbohydrases (0.35) were used at 3 h from the initiation of the reaction. A high ethanol yield (0.23 g g−1 of dry FW) was obtained after 15 h of fermentation by S. cerevisiae by using the FW broth hydrolyzed by the enzyme mixture and was estimated to be nearly equivalent to the ethanol yields of lignocellulose biomasses. With regard to the effect of salt on ethanol fermentation, no alteration in the fermentation parameters was observed up to a salt content of 3% w/v. At a salt content of over 4%, however, substrate uptake and cell growth dramatically decreased, and a slight reduction in ethanol yield was observed. FW utilization for ethanol production by enzymatic hydrolysis and ethanol fermentation by S. cerevisiae suggests a promising practical approach to prevent environmental pollution and obtain a product of high value, ethanol. Copyright © 2008 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: The construction of such a database, called RiceArrayNet (RAN), is described, which provides information on coexpression between genes in terms of correlation coefficients (r values), and can be used as a tool to gain insight into a particular gene by examining its coexpression partners.
Abstract: Microarray data can be used to derive understanding of the relationships between the genes involved in various biological systems of an organism, given the availability of databases of gene expression measurements from the complete spectrum of experimental conditions and materials. However, there have been no reports, to date, of such a database being constructed for rice (Oryza sativa). Here, we describe the construction of such a database, called RiceArrayNet (RAN; http://www.ggbio.com/arraynet/), which provides information on coexpression between genes in terms of correlation coefficients (r values). The average number of coexpressed genes is 214, with sd of 440 at r ≥ 0.5. Given the correlation between genes in a gene pair, the degrees of closeness between genes can be visualized in a relational tree and a relational network. The distribution of correlated genes according to degree of stringency shows how each gene is related to other genes. As an application of RAN, the 16-member L7Ae ribosomal protein family was explored for coexpressed genes and gene expression values within and between rice and Arabidopsis (Arabidopsis thaliana), and common and unique features in coexpression partners and expression patterns were observed for these family members. We observed a correlation pattern between Os01g0968800, a drought-responsive element-binding transcription factor, Os02g0790500, a trehalose-6-phosphate synthase, and Os06g0219500, a small heat shock factor, reflecting the fact that genes responding to the same biological stresses are regulated together. The RAN database can be used as a tool to gain insight into a particular gene by examining its coexpression partners.

Journal ArticleDOI
TL;DR: It was concluded that strain CBMB27T represents a novel species in the genus Methylobacterium for which the name MethylOBacterium phyllosphaerae sp.
Abstract: A pink-pigmented, aerobic, facultatively methylotrophic bacterial strain, CBMB27T, isolated from leaf tissues of rice (Oryza sativa L. ‘Dong-Jin’), was analysed using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacterium oryzae, Methylobacterium fujisawaense and Methylobacterium mesophilicum; strain CBMB27T showed sequence similarities of 98.3, 98.5 and 97.3 %, respectively, to the type strains of these three species. DNA–DNA hybridization experiments revealed low levels (<38 %) of DNA–DNA relatedness between strain CBMB27T and its closest relatives. The sequence of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) in strain CBMB27T differed from those of close relatives. The major fatty acid of the isolate was C18 : 1 ω7c and the G+C content of the genomic DNA was 66.8 mol%. Based on the results of 16S rRNA gene sequence analysis, DNA–DNA hybridization, and physiological and biochemical characterization, which enabled the isolate to be differentiated from all recognized species of the genus Methylobacterium, it was concluded that strain CBMB27T represents a novel species in the genus Methylobacterium for which the name Methylobacterium phyllosphaerae sp. nov. is proposed (type strain CBMB27T =LMG 24361T =KACC 11716T =DSM 19779T).

Journal ArticleDOI
TL;DR: It is shown that pristimerin, a natural triterpenoid, induces mitochondrial cell death in human cervical cancer cells and that reactive oxygen species (ROS)-dependent activation of both Bax and poly(ADP-ribose) polymerase-1 (PARP-1) is critically required for the mitochondrial dysfunction.
Abstract: Naturally occurring triterpenoid compounds have long been used as anti-inflammatory, antimalarial, and insecticidal agents. It has become evident that some of the natural or synthetic triterpenoids have promising clinical potential as both a therapeutic and chemopreventive agent for cancer. However, the molecular basis for the antitumor activity of triterpenoid has yet to be defined. In this study, we show that pristimerin, a natural triterpenoid, induces mitochondrial cell death in human cervical cancer cells and that reactive oxygen species (ROS)-dependent activation of both Bax and poly(ADP-ribose) polymerase-1 (PARP-1) is critically required for the mitochondrial dysfunction. We also showed that c-Jun N-terminal kinase (JNK) is involved in ROS-dependent Bax activation. Treatment of pristimerin induced an increase in intracellular ROS, JNK activation, conformational change, and mitochondrial redistribution of Bax, mitochondrial membrane potential loss, and cell death. The PARP-1 was also found to be activated by pristimerin treatment. An antioxidant, N-acetyl-l-cysteine (NAC), inhibited pristimerin-induced JNK activation, Bax relocalization, and PARP-1 activation, as well as mitochondrial cell death. Moreover, inhibition of JNK clearly suppressed conformational change and mitochondrial translocation of Bax and subsequent mitochondrial cell death but did not affect PARP-1 activation. Inhibition of PARP-1 with 1,5-dihydroxyisoquinoline (DIQ) or with small interfering RNA of PARP-1 significantly attenuated pristimerin-induced mitochondrial membrane potential loss and cell death but did not affect JNK activation and Bax relocalization. These results indicate that the natural triterpenoid pristimerin induces mitochondrial cell death through ROS-dependent activation of both Bax and PARP-1 in human cervical cancer cells and that JNK is involved in ROS-dependent Bax activation.

Journal ArticleDOI
30 May 2009-Planta
TL;DR: It is demonstrated that the targeting of cry1Ac protein to the chloroplast using the rbcS:tp system confers a high level of plant protection to insects, thus providing an alternative strategy for crop insect management.
Abstract: To increase insect resistance in transgenic rice plants, a synthetic truncated cry1Ac gene was linked to the rice rbcS promoter and its transit peptide sequence (tp) for chloroplast-targeted expression. Several transgenic lines were generated by the Agrobacterium-mediated transformation method and the expression levels of the transgene were compared with untargeted expression. Use of the rbcS-tp sequence increased the cry1Ac transcript and protein levels by 25- and 100-fold, respectively, with the accumulated protein in chloroplasts comprising up to 2% of the total soluble proteins. The high level of cry1Ac expression resulted in high levels of plant resistance to three common rice pests, rice leaf folder, rice green caterpillar, and rice skipper, as evidenced by insect feeding assays. Transgenic plants were also evaluated for resistance to natural infestations by rice leaf folder under field conditions. Throughout the entire period of plant growth, the transgenic plants showed no symptoms of damage, whereas nontransgenic control plants were severely damaged by rice leaf folders. Our results demonstrate that the targeting of cry1Ac protein to the chloroplast using the rbcS:tp system confers a high level of plant protection to insects, thus providing an alternative strategy for crop insect management.

Journal ArticleDOI
TL;DR: The results clearly indicate the neem-based pesticide (Parker Oil and Neema), containing low lethal concentration, can be used effectively to inhibit the growth and survival of N. lugens.

Journal ArticleDOI
TL;DR: Chalk, an opaque area in the rice grain, is an important quality characteristic in rice and occurs most commonly when grains are exposed to high temperatures during development.
Abstract: Chalk, an opaque area in the rice grain, is an important quality characteristic in rice and occurs most commonly when grains are exposed to high temperatures during development. Chalky rice decreases the value of rice because of its undesirable appearance and eating quality for consumers. We investigated the chemical composition, morphological structure, cooking, texture properties of cooked rice, and pasting and gelatinization properties to evaluate the reason for the deterioration in eating quality of chalky rice.

Journal ArticleDOI
TL;DR: It is proposed that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.
Abstract: Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers. The persistence of AtCYS6 protein expression in seedlings was promoted by abscisic acid (ABA), a seed germination and post-germination inhibitory phytohormone. This finding was made in transgenic plants bearing an AtCYS6 promoter–β-glucuronidase (GUS) reporter construct, where we found that expression from the AtCYS6 promoter persisted after ABA treatment but was reduced under control conditions and by gibberellin4+7 (GA4+7) treatment during the germination and post-germinative periods. In addition, constitutive over-expression of AtCYS6 retarded germination and seedling growth, whereas these were enhanced in an AtCYS6 knock-out mutant (cys6-2). Additionally, cysteine proteinase activities stored in seeds were inhibited by AtCYS6 in transgenic Arabidopsis. From these data, we propose that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.

Journal ArticleDOI
TL;DR: Both GzICL1 and GzMCL1 may play important roles in determining major mycological and pathological traits of G. zeae by participating in different metabolic pathways for the use of fatty acids.
Abstract: The glyoxylate and methylcitrate cycles are involved in the metabolism of two- or three-carbon compounds in fungi. To elucidate the role(s) of these pathways in Gibberella zeae, which causes head blight in cereal crops, we focused on the functions of G. zeae orthologs (GzICL1 and GzMCL1) of the genes that encode isocitrate lyase (ICL) and methylisocitrate lyase (MCL), respectively, key enzymes in each cycle. The deletion of GzICL1 (ΔGzICL1) caused defects in growth on acetate and in perithecium (sexual fruiting body) formation but not in virulence on barley and wheat, indicating that GzICL1 acts as the ICL of the glyoxylate cycle and is essential for self-fertility in G. zeae. In contrast, the ΔGzMCL1 strains failed to grow on propionate but exhibited no major changes in other traits, suggesting that GzMCL1 is required for the methylcitrate cycle in G. zeae. Interestingly, double deletion of both GzICL1 and GzMCL1 caused significantly reduced virulence on host plants, indicating that both GzICL1 and GzMCL1 have redundant functions for plant infection in G. zeae. Thus, both GzICL1 and GzMCL1 may play important roles in determining major mycological and pathological traits of G. zeae by participating in different metabolic pathways for the use of fatty acids.

Journal ArticleDOI
TL;DR: The backscattering coefficients of a rice field can accurately be modeled using the radiative transfer theory and it is demonstrated that a polarimetric scatterometer is an effective tool for estimating rice growth.
Abstract: The polarimetric backscattering coefficients (vv-, hh-, hv-, and vh-polarizations) of a flooded rice field are measured using L- and C-band ground-based polarimetric scatterometers. These measurements were made during the rice growth cycle, i.e., from the transplanting period to the harvest period (May to October 2006), to understand the feasibility of modeling and estimating rice growth. We also collected ground truth data that include fresh and dry biomasses, plant height, leaf area index, and leaf size. To study the incidence angle effect, the scatterometer data were collected at four different incidence angles, i.e., 30deg , 40deg, 50deg, and 60deg. In this paper, we show that the backscattering coefficients of a rice field can accurately be modeled using the radiative transfer theory. We also demonstrate that a polarimetric scatterometer is an effective tool for estimating rice growth. The hh-polarized backscattering coefficient is more sensitive to rice growth than its vv-polarization counterpart. The polarimetric ratio can be used to estimate rice growth accurately.

Journal ArticleDOI
TL;DR: The results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.
Abstract: Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.

Journal ArticleDOI
TL;DR: Results indicate that JA application induces systemic defenses in rice that have a direct negative impact on N. lugens survivorship, and expands the knowledge the effects of JA-dependent defenses on phloem-feeding insects.

Journal ArticleDOI
TL;DR: Histochemical analysis indicated that the hypersensitive-response was induced in the oscbt-1 mutant in response to compatible strains of fungal pathogens, supporting an idea that OsCBT might act as a negative regulator on plant defense.
Abstract: We previously isolated the OsCBT gene, which encodes a calmodulin (CaM)-binding protein, from a rice expression library constructed from fungal elicitor-treated rice suspension cells In order to understand the function of OsCBT in rice, we isolated and characterized a T-DNA insertion mutant allele named oscbt-1 The oscbt-1 mutant exhibits reduced levels of OsCBT transcripts and no significant morphological changes compared to wild-type plant although the growth of the mutant is stunted However, oscbt-1 mutants showed significant resistance to two major rice pathogens The growth of the rice blast fungus Magnaporthe grisea, as well as the bacterial pathogen Xanthomonas oryzae pv oryzae was significantly suppressed in oscbt-1 plants Histochemical analysis indicated that the hypersensitive-response was induced in the oscbt-1 mutant in response to compatible strains of fungal pathogens OsCBT expression was induced upon challenge with fungal elicitor We also observed significant increase in the level of pathogenesis-related genes in the oscbt-1 mutant even under pathogen-free condition Taken together, the results support an idea that OsCBT might act as a negative regulator on plant defense

Journal ArticleDOI
TL;DR: Analysis of the aberrant epigenetic reprograming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).

Journal ArticleDOI
TL;DR: An efficient protocol of shoot regeneration from callus, effects of explant type, culture media and plant growth regulators on callus induction and shoot regeneration of Chinese jiaotou were evaluated and provides a basis for future studies on genetic improvement.

Journal ArticleDOI
TL;DR: The results suggest that chwinamul vegetables can be used for treatment or prevention of peroxynitrite-related diseases.
Abstract: Mountainous vegetables called chwinamul are used in Korea to promote health. Chwinamul was obtained from several plants belonging to the Compositae - e.g., Kalimeris yomena, Aster scaber, Solidago virga var. gigantea, Solidago viragaurea var. asiatica, Saussurea grandifolia, Ainsliaea acerifolia - were used for our experiments. Analytical methods for simultaneous determination of the caffeoylquinic acids (3,4-di-O-caffeoylquinic acid, 3,5-di-O-dicaffeoyl-epi-quinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, 3-O-p-coumaroyl-caffeoylquinic acids) were established for chwinamul. The kinds of constituents were identified from HPLC chromatograms and it was possible to calculate the percentage (w/w) of seven of these compounds in the dried plants and in the extracts. The proportion of caffeoylquinic acids in the extracts ranged from 20.25 to 38.35%. Since it is known that peroxynitrite (ONOO(-))-scavenging is beneficial for amelioration of obesity, diabetes mellitus, atherosclerosis and even Alzheimer's disease, assays for peroxynitrite-scavenging activity were performed on the seven chwinamul plants. Of the tested extracts, the MeOH extract of A. acerifolia had the most potent effect (IC(50) 1.49 +/- 0.68 microg/mL). These results suggest that chwinamul vegetables can be used for treatment or prevention of peroxynitrite-related diseases.

Journal ArticleDOI
TL;DR: Phylogenetic, phenotypic and chemotaxonomic data accumulated in this study revealed that 5420S-26(T) and 5516S-1(T), recovered from air samples collected in Suwon, Korea, represent novel species of the genus Massilia, for which the names Massilia niabensis sp.
Abstract: Two bacterial isolates, designated strains 5420S-26T and 5516S-1T, were recovered from air samples collected in Suwon, Korea. Cells of both strains were aerobic, Gram-negative, motile rods. Phylogenetically, these strains were positioned within the radius of the genus Massilia. 16S rRNA gene sequence analysis showed that the strains shared 97.3 % sequence similarity and had sequence similarities of 94.9–98.1 % with respect to type strains of species belonging to the genus Massilia. In DNA–DNA hybridization tests, the two strains showed <39 % relatedness with respect to strains of closely related species of the genus Massilia and 27 % relatedness to each other. Both strains contained Q-8 as the predominant isoprenoid quinone and possessed summed feature 3 (comprising C16 : 1 ω7c and/or iso-C15 : 0 2-OH) as the major fatty acid. Strain 5516S-1T was found to contain the fatty acid C20 : 0 (in small amounts), a feature that served to distinguish it from both 5420S-26T and recognized members of the genus Massilia. The DNA G+C contents of 5420S-26T and 5516S-1T were 67.8 and 66.6 mol%, respectively. Phylogenetic, phenotypic and chemotaxonomic data accumulated in this study revealed that 5420S-26T and 5516S-1T represent novel species of the genus Massilia, for which the names Massilia niabensis sp. nov. (type strain 5420S-26T =KACC 12632T =DSM 21312T) and Massilia niastensis sp. nov. (type strain 5516S-1T =KACC 12599T =DSM 21313T) are proposed, respectively.

Journal ArticleDOI
TL;DR: In this article, the authors compared biomass and seed production of intermediate wheatgrass (Thinopyrum intermedium [Host] Barkworth and D.R. Dewey), big bluestem (Andropogon gerardii Vitman), and switchgrass (Panicum virgatum L.) on two topographic positions (footslope and backslope).
Abstract: A principle attribute of perennial grasses for biomass energy is the potential for high yields on marginal lands. Objectives of this study were to compare biomass and seed production of intermediate wheatgrass (Thinopyrum intermedium [Host] Barkworth and D.R. Dewey), big bluestem (Andropogon gerardii Vitman), and switchgrass (Panicum virgatum L.) as affected by harvest timing and manure application on two topographic positions (footslope and backslope). Footslope is the hillslope position that forms the inclined surface at the base of a slope and backslope forms the steepest, middle position of the hillslope. Grasses were harvested for biomass at anthesis (summer), after a killing frost (autumn), or the following spring after overwintering in the field. Seed was harvested at maturity during 2003 and 2004. Two rates of beef cattle (Bos taurus L.) manure (target rates of 0 and 150 kg total-N ha−1) were surface applied annually. Maximum annual biomass yield ranged from 4.4 to 5.2, 2.7 to 4.2, and 3.7 to 5.6 Mg ha−1 for intermediate wheatgrass, big bluestem, and switchgrass, respectively. Biomass yields were not different between fall and spring harvest treatments. Biomass yields of big bluestem and switchgrass at the backslope position were 86% and 96% of biomass yields at the footslope position with normal precipitation, respectively. Manure application increased biomass yield approximately 30% during the second year on both topographic positions. The highest seed yield was obtained from intermediate wheatgrass, followed by switchgrass and big bluestem. Utilizing these management practices in our environment, it appears that switchgrass and big bluestem could be allowed to overwinter in the field without suffering appreciable loss of biomass.

Journal ArticleDOI
TL;DR: Results suggest that gangliosides may play a role in the neural differentiation process of hDPSCs, and were inhibited by knockdown of UDP-glucose ceramide glucosyltransferase, which prevented differentiation into neural cells.