scispace - formally typeset
Search or ask a question
Institution

Syngenta

CompanyBasel, Switzerland
About: Syngenta is a company organization based out in Basel, Switzerland. It is known for research contribution in the topics: Population & Gene. The organization has 4724 authors who have published 6036 publications receiving 164311 citations. The organization is also known as: Syngenta & Syngenta AG.
Topics: Population, Gene, Cultivar, Germplasm, Alkyl


Papers
More filters
Journal ArticleDOI
TL;DR: The main questions answered in this report are whether it would be possible to give detailed guidance on how to grade allergen potency based on the existing methods, whether such grading could be translated into practical thresholds and whether these could be set for both induction and elicitation.
Abstract: The Technical Committee of Classification and Labelling dealing with harmonized classification of substances and classification criteria under Directive 67/548/EEC on behalf of the European Commission nominated an expert group on skin sensitization in order to investigate further the possibility for potency consideration of skin sensitizers for future development of the classification criteria. All substances and preparations should be classified on the basis of their intrinsic properties and should be labelled accordingly with the rules set up in the Directive 67/548/EEC. The classification should be the same under their full life cycle and in the case that there is no harmonized classification the substance or preparation should be self-classified by the manufacturer in accordance with the same criteria. The Directive does not apply to certain preparations in the finished state, such as medical products, cosmetics, food and feeding stuffs, which are subject to specific community legislation. The main questions that are answered in this report are whether it would be possible to give detailed guidance on how to grade allergen potency based on the existing methods, whether such grading could be translated into practical thresholds and whether these could be set for both induction and elicitation. Examples are given for substances falling into various potency groups for skin sensitization relating to results from the local lymph node assay, the guinea pig maximization test, the Buehler method and human experience.

120 citations

Journal ArticleDOI
Hongmei Cai, Yongen Lu, Weibo Xie, Tong Zhu1, Xingming Lian 
TL;DR: Comparative analysis between rice and Arabidopsis identified 73 orthologous groups that responded to N starvation, demonstrated the existence of conserved N stress coupling mechanism among plants, and revealed differential expression of miR399 and miR530 under N starve, suggesting their potential roles in plant nutrient homeostasis.
Abstract: Nitrogen is an essential mineral nutrient required for plant growth and development. Insufficient nitrogen (N) supply triggers extensive physiological and biochemical changes in plants. In this study, we used Affymetrix GeneChip rice genome arrays to analyse the dynamics of rice transcriptome under N starvation. N starvation induced or suppressed transcription of 3518 genes, representing 10.88 percent of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or 13.1 percent transcripts for N starvation expressed similarly in root and shoot. Comparative analysis between rice and Arabidopsis identified 73 orthologous groups that responded to N starvation, demonstrated the existence of conserved N stress coupling mechanism among plants. Additional analysis of transcription profiles of microRNAs revealed differential expression of miR399 and miR530 under N starvation, suggesting their potential roles in plant nutrient homeostasis.

120 citations

Journal ArticleDOI
TL;DR: Sign of coincidences between QTLs underlined the role of a “stay-green” phenotype in favouring N-uptake capacity, and thus grain yield and N grain yield.
Abstract: The objective of this study was to map and characterize QTLs for traits related to nitrogen utilization efficiency (NUE), grain N yield, N-remobilization and post-silking N-uptake. Furthermore, to examine whether QTLs detected with recombinant inbred lines (RILs) crossed to a tester are common to those detected with line per se evaluation, both types of evaluations were developed from the same set of RILs. The material was studied over two years at high N-input, and one year at low N-input. We used 15N-labelling to evaluate with accuracy the proportion of N remobilized from stover to kernels and the proportion of postsilking N-uptake allocated to kernels. With 59 traits studied in three environments, 608 QTLs were detected. Using a method of QTL clustering, 72 clusters were identified, with few QTLs being specific to one environment or to the type of plant material (lines or testcross families). However, considering each trait separately, few QTLs were common to both line per se and testcross evaluation. This shows that genetic variability is expressed differently according to the type of progeny. Studies of coincidences among QTLs within the clusters showed an antagonism between N-remobilization and N-uptake in several QTL-clusters. QTLs for N-uptake, root system architecture and leaf greenness coincided positively in eight clusters. QTLs for remobilization mainly coincided in clusters with QTLs for leaf senescence. On the whole, sign of coincidences between QTLs underlined the role of a “stay-green” phenotype in favouring N-uptake capacity, and thus grain yield and N grain yield.

120 citations

Journal ArticleDOI
TL;DR: The mechanism by which an estrogen induces organ growth and tissue maturation is defined, and comparison of temporal changes in gene expression and conventional toxicology end points can facilitate the phenotypic anchoring of toxicogenomic data is demonstrated.
Abstract: A major challenge in the emerging field of toxicogenomics is to define the relationships between chemically induced changes in gene expression and alterations in conventional toxicologic parameters such as clinical chemistry and histopathology. We have explored these relationships in detail using the rodent uterotrophic assay as a model system. Gene expression levels, uterine weights, and histologic parameters were analyzed 1, 2, 4, 8, 24, 48, and 72 hr after exposure to the reference physiologic estrogen 17 beta-estradiol (E2). A multistep analysis method, involving unsupervised hierarchical clustering followed by supervised gene ontology-driven clustering, was used to define the transcriptional program associated with E2-induced uterine growth and to identify groups of genes that may drive specific histologic changes in the uterus. This revealed that uterine growth and maturation are preceded and accompanied by a complex, multistage molecular program. The program begins with the induction of genes involved in transcriptional regulation and signal transduction and is followed, sequentially, by the regulation of genes involved in protein biosynthesis, cell proliferation, and epithelial cell differentiation. Furthermore, we have identified genes with common molecular functions that may drive fluid uptake, coordinated cell division, and remodeling of luminal epithelial cells. These data define the mechanism by which an estrogen induces organ growth and tissue maturation, and demonstrate that comparison of temporal changes in gene expression and conventional toxicology end points can facilitate the phenotypic anchoring of toxicogenomic data.

119 citations

Journal ArticleDOI
TL;DR: A tiered approach is described in which basic pharmacokinetic studies, similar to those for pharmaceuticals, are conducted for regulatory submission, and subsequent tiers provide additional information in an iterative manner, depending on pharmacokinetics properties, toxicity study results, and the intended uses of the compound.
Abstract: A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studies are scientifically appropriate and necessary without being redundant, and that tests emphasize toxicological endpoints and exposure durations that are relevant for risk assessment. Incorporation of pharmacokinetic studies describing absorption, distribution, metabolism, and excretion is an essential tool for improving the design and interpretation of toxicity studies and their application for safety assessment. A tiered approach is described in which basic pharmacokinetic studies, similar to those for pharmaceuticals, are conducted for regulatory submission. Subsequent tiers provide additional information in an iterative manner, depending on pharmacokinetic properties, toxicity study results, and the intended uses of the compound.

118 citations


Authors

Showing all 4737 results

NameH-indexPapersCitations
John R. Yates1771036129029
Thomas Boller10131042294
Tamio Hayashi9879935281
Ian Kimber9162028629
Roberto Bassi8932021655
Michael P. Washburn8129632468
Robert Gurny8139628391
Ian Jones8035337673
Xinnian Dong6610827849
Willem F. Broekaert6615519690
Rebecca J. Dearman6628713197
Steven J. Rothstein6616413804
Tong Zhu6412417310
John Ryals6311523451
Nicholas A. Buckley6241914283
Network Information
Related Institutions (5)
Novartis
50.5K papers, 1.9M citations

85% related

United States Environmental Protection Agency
26.9K papers, 1.1M citations

85% related

Merck & Co.
48K papers, 1.9M citations

85% related

Pfizer
37.4K papers, 1.6M citations

85% related

GlaxoSmithKline
21.1K papers, 1.1M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202218
2021272
2020277
2019260
2018275
2017250