scispace - formally typeset
Search or ask a question

Showing papers by "Syngenta published in 2015"


Journal ArticleDOI
TL;DR: Overexpressed a gene encoding a rice trehalose-6-phosphate phosphatase (TPP) in developing maize ears using a floral promoter and showed that the engineered trait improved yields from 9% to 49% under non-drought or mild drought conditions, and from 31% to 123% under more severe drought Conditions, relative to yields from nontransgenic controls.
Abstract: Maize, the highest-yielding cereal crop worldwide, is particularly susceptible to drought during its 2- to 3-week flowering period. Many genetic engineering strategies for drought tolerance impinge on plant development, reduce maximum yield potential or do not translate from laboratory conditions to the field. We overexpressed a gene encoding a rice trehalose-6-phosphate phosphatase (TPP) in developing maize ears using a floral promoter. This reduced the concentration of trehalose-6-phosphate (T6P), a sugar signal that regulates growth and development, and increased the concentration of sucrose in ear spikelets. Overexpression of TPP increased both kernel set and harvest index. Field data at several sites and over multiple seasons showed that the engineered trait improved yields from 9% to 49% under non-drought or mild drought conditions, and from 31% to 123% under more severe drought conditions, relative to yields from nontransgenic controls.

312 citations


Journal ArticleDOI
TL;DR: The pathogenic lifestyle of Z. tritici on wheat revealed, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.
Abstract: The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum) Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z tritici on wheat leaves Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z tritici, which may instead be utilizing lipid and fatty acid stores for growth However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence The pathogenic lifestyle of Z tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection

247 citations


Journal ArticleDOI
TL;DR: Season-long monitoring revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse species may provide the greatest benefit.
Abstract: Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse species may provide the greatest benefit. Wildflower mixes may be particularly important for providing resources for some taxa, such as bumble bees, which are known to be in decline in several regions of North America. No mix consistently attained the full diversity that was planted. Further study is needed on how to achieve the desired floral display and diversity from seed mixes.

190 citations


Journal ArticleDOI
TL;DR: In this commentary Syngenta scientists give their views on the key wheat pathogen Zymoseptoria tritici from its business importance in Europe, the way the company screens new Z. tritico fungicides, and the way it monitors the evolution of fungicide resistance.

179 citations


Journal ArticleDOI
TL;DR: A pattern of variation was revealed that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection, and clarified the biological status of SLC as true phylogenetic group within tomato.
Abstract: Domestication modifies the genomic variation of species. Quantifying this variation provides insights into the domestication process, facilitates the management of resources used by breeders and germplasm centers, and enables the design of experiments to associate traits with genes. We described and analyzed the genetic diversity of 1,008 tomato accessions including Solanum lycopersicum var. lycopersicum (SLL), S. lycopersicum var. cerasiforme (SLC), and S. pimpinellifolium (SP) that were genotyped using 7,720 SNPs. Additionally, we explored the allelic frequency of six loci affecting fruit weight and shape to infer patterns of selection. Our results revealed a pattern of variation that strongly supported a two-step domestication process, occasional hybridization in the wild, and differentiation through human selection. These interpretations were consistent with the observed allele frequencies for the six loci affecting fruit weight and shape. Fruit weight was strongly selected in SLC in the Andean region of Ecuador and Northern Peru prior to the domestication of tomato in Mesoamerica. Alleles affecting fruit shape were differentially selected among SLL genetic subgroups. Our results also clarified the biological status of SLC. True SLC was phylogenetically positioned between SP and SLL and its fruit morphology was diverse. SLC and “cherry tomato” are not synonymous terms. The morphologically-based term “cherry tomato” included some SLC, contemporary varieties, as well as many admixtures between SP and SLL. Contemporary SLL showed a moderate increase in nucleotide diversity, when compared with vintage groups. This study presents a broad and detailed representation of the genomic variation in tomato. Tomato domestication seems to have followed a two step-process; a first domestication in South America and a second step in Mesoamerica. The distribution of fruit weight and shape alleles supports that domestication of SLC occurred in the Andean region. Our results also clarify the biological status of SLC as true phylogenetic group within tomato. We detect Ecuadorian and Peruvian accessions that may represent a pool of unexplored variation that could be of interest for crop improvement.

166 citations


Journal ArticleDOI
TL;DR: This article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessment of bioavailability within retrospective risk assessment frameworks for organic chemicals.
Abstract: The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently started to consider bioavailability within retrospective risk assessment frameworks for organic chemicals; by doing so, realistic decision-making with regard to polluted environments can be achieved, rather than relying on the traditional approach of using total-extractable concentrations. However, implementation remains difficult because scientific developments on bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, bioavailability remains largely unexplored within prospective regulatory frameworks that address the approval and regulation of organic chemicals. This article discusses bioavailability concepts and methods, as well as possible pathways for the implementation of bioavailability into risk assessment and regulation; in addition, this article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessment.

161 citations


Journal ArticleDOI
Christopher M. Baker1
TL;DR: Polarizable force fields have been widely used for the simulation of biomolecules as mentioned in this paper, and their use has been largely experimental, with their use restricted to specialized researchers, but this situation is now changing.
Abstract: Molecular dynamics simulations are well established for the study of biomolecular systems. Within these simulations, energy functions known as force fields are used to determine the forces acting on atoms and molecules. While these force fields have been very successful, they contain a number of approximations, included to overcome limitations in computing power. One of the most important of these approximations is the omission of polarizability, the process by which the charge distribution in a molecule changes in response to its environment. Since polarizability is known to be important in many biochemical situations, and since advances in computer hardware have reduced the need for approximations within force fields, there is major interest in the use of force fields that include an explicit representation of polarizability. As such, a number of polarizable force fields have been under development: these have been largely experimental, and their use restricted to specialized researchers. This situation is now changing. Parameters for fully optimized polarizable force fields are being published, and associated code incorporated into standard simulation software. Simulations on the hundred-nanosecond timescale are being reported, and are now within reach of all simulation scientists. In this overview, I examine the polarizable force fields available for the simulation of biomolecules, the systems to which they have been applied, and the benefits and challenges that polarizability can bring. In considering future directions for development of polarizable force fields, I examine lessons learnt from non-polarizable force fields, and highlight issues that remain to be addressed. WIREs Comput Mol Sci 2015, 5:241–254. doi: 10.1002/wcms.1215 For further resources related to this article, please visit the WIREs website. Conflict of interest: The author has declared no conflicts of interest for this article.

149 citations


Journal ArticleDOI
TL;DR: Calculated molecular weights, lipophilicities, and polar surface areas are presented, demonstrating the utility of the method for delivering sulfonamides with drug-like properties.
Abstract: We describe a method for the synthesis of sulfonamides through the combination of an organometallic reagent, a sulfur dioxide equivalent, and an aqueous solution of an amine under oxidative conditions (bleach). This simple reaction protocol avoids the need to employ sulfonyl chloride substrates, thus removing the limitation imposed by the commercial availability of these reagents. The resultant method allows access to new chemical space, and is also tolerant of the polar functional groups needed to impart favorable physiochemical properties required for medicinal chemistry and agrochemistry. The developed chemistry is employed in the synthesis of a targeted 70 compound array, prepared using automated methods. The array achieved a 93% success rate for compounds prepared. Calculated molecular weights, lipophilicities, and polar surface areas are presented, demonstrating the utility of the method for delivering sulfonamides with drug-like properties.

129 citations


Journal ArticleDOI
TL;DR: Key points from the information presented at the meeting on the genetic basis of plant genome variability in general, unintended changes at the molecular and phenotypic levels, and the development and use of hypothesis-driven evaluations of unintended effects in assessing conventional and GM crops are summarized.
Abstract: In January 2014, an international meeting sponsored by the International Life Sciences Institute/Health and Environmental Sciences Institute and the Canadian Food Inspection Agency titled “Genetic Basis of Unintended Effects in Modified Plants” was held in Ottawa, Canada, bringing together over 75 scientists from academia, government, and the agro-biotech industry. The objectives of the meeting were to explore current knowledge and identify areas requiring further study on unintended effects in plants and to discuss how this information can inform and improve genetically modified (GM) crop risk assessments. The meeting featured presentations on the molecular basis of plant genome variability in general, unintended changes at the molecular and phenotypic levels, and the development and use of hypothesis-driven evaluations of unintended effects in assessing conventional and GM crops. The development and role of emerging “omics” technologies in the assessment of unintended effects was also discussed. Several themes recurred in a number of talks; for example, a common observation was that no system for genetic modification, including conventional methods of plant breeding, is without unintended effects. Another common observation was that “unintended” does not necessarily mean “harmful”. This paper summarizes key points from the information presented at the meeting to provide readers with current viewpoints on these topics.

111 citations


Journal ArticleDOI
TL;DR: A model oil-in-water system for studying particle bridging in Pickering emulsions stabilised by fluorescent Stöber silica and looking for direct evidence of droplets sharing particles using freeze fracture scanning electron microscopy is developed.

109 citations


Journal ArticleDOI
TL;DR: Genetic analysis of the thousand grain weight by genome-wide association study (GWAS) was performed with a panel of 358 European winter wheat varieties and 14 spring wheat varieties using phenotypic data of field tests in eight environments and overall, TGW was determined by many markers with small effects.
Abstract: Grain weight, an essential yield component, is under strong genetic control and at the same time markedly influenced by the environment. Genetic analysis of the thousand grain weight (TGW) by genome-wide association study (GWAS) was performed with a panel of 358 European winter wheat (Triticum aestivum L.) varieties and 14 spring wheat varieties using phenotypic data of field tests in eight environments. Wide phenotypic variations were indicated for the TGW with BLUEs (best linear unbiased estimations) values ranging from 35.9 to 58.2 g with a mean value of 45.4 g and a heritability of H(2) = 0.89. A total of 12 candidate genes for plant height, photoperiodism and grain weight were genotyped on all varieties. Only three candidates, the photoperiodism gene Ppd-D1, dwarfing gene Rht-B1and the TaGW-6A gene were significant explaining up to 14.4, 2.3, and 3.4% of phenotypic variation, respectively. For a comprehensive genome-wide analysis of TGW-QTL genotyping data from 732 microsatellite markers and a set of 7769 mapped SNP-markers genotyped with the 90k iSELECT array were analyzed. In total, 342 significant (-log10 (P-value) ≥ 3.0) marker trait associations (MTAs) were detected for SSR-markers and 1195 MTAs (-log10(P-value) ≥ 3.0) for SNP-markers in all single environments plus the BLUEs. After Bonferroni correction, 28 MTAs remained significant for SSR-markers (-log10 (P-value) ≥ 4.82) and 58 MTAs for SNP-markers (-log10 (P-value) ≥ 5.89). Apart from chromosomes 4B and 6B for SSR-markers and chromosomes 4D and 5D for SNP-markers, MTAs were detected on all chromosomes. The highest number of significant SNP-markers was found on chromosomes 3B and 1B, while for the SSRs most markers were significant on chromosomes 6D and 3D. Overall, TGW was determined by many markers with small effects. Only three SNP-markers had R(2) values above 6%.

Journal ArticleDOI
TL;DR: Natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel is assessed, showing that genetic variation may affect multiple steps in pathways involved in tergite development and melanization.
Abstract: Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population. We quantified the proportion of melanization on the two most posterior abdominal segments, tergites 5 and 6 (T5, T6). We found significant genetic variation in the proportion of melanization and high broad-sense heritabilities for each tergite. Genome-wide association studies identified over 150 DNA variants associated with the proportion of melanization on T5 (84), T6 (34), and the difference between T5 and T6 (35). Several of the top variants associated with variation in pigmentation are in tan, ebony, and bric-a-brac1, genes known to affect D. melanogaster abdominal pigmentation. Mutational analyses and targeted RNAi-knockdown showed that 17 out of 28 (61%) novel candidate genes implicated by the genome-wide association study affected abdominal pigmentation. Several of these genes are involved in developmental and regulatory pathways, chitin production, cuticle structure, and vesicle formation and transport. These findings show that genetic variation may affect multiple steps in pathways involved in tergite development and melanization. Variation in these novel candidates may serve as targets for adaptive evolution and sexual selection in D. melanogaster.

Patent
02 Jul 2015
TL;DR: In this article, the substituents are defined as defined in claim 1, and the agrochemically acceptable salts salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds, can be used as insecticides and can be prepared in a manner known per se.
Abstract: Compounds of formula (I), wherein the substituents are as defined in claim 1 , and the agrochemically acceptable salts salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds, can be used as insecticides and can be prepared in a manner known per se.

Journal ArticleDOI
Yang Gu1, Dalu Chang1, Xuebing Leng1, Yucheng Gu2, Qilong Shen1 
TL;DR: In this paper, the preparation of thermally stable, well-defined NHC-ligated difluoromethylated silver complexes was described, and the structural assignments were ambiguously further confirmed by single-crystal X-ray diffraction.

Journal ArticleDOI
Ronnie Chamanza1, Jayne Wright1
TL;DR: It is concluded that, while the nasal cavity of the monkey might be more similar to that of man, each laboratory animal species provides a model that responds in a characteristic and species-specific manner, and careful consideration must be given to the anatomical differences between a given animal model and man.

Journal ArticleDOI
TL;DR: Examples of similarities occurring at different ecological scales are discussed, from predator-prey relations (attack rates and handling times) through communities (food-web structures) to ecosystem properties.
Abstract: Much of the focus in evolutionary biology has been on the adaptive differentiation among organisms. It is equally important to understand the processes that result in similarities of structure among systems. Here, we discuss examples of similarities occurring at different ecological scales, from predator–prey relations (attack rates and handling times) through communities (food-web structures) to ecosystem properties. Selection among systemic configurations or patterns that differ in their intrinsic stability should lead generally to increased representation of relatively stable structures. Such nonadaptive, but selective processes that shape ecological communities offer an enticing mechanism for generating widely observed similarities, and have sparked new interest in stability properties. This nonadaptive systemic selection operates not in opposition to, but in parallel with, adaptive evolution.

Journal ArticleDOI
TL;DR: It is shown that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans‐stimulated in counterexchange mode by GABA, Glu and Asp.
Abstract: Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic homeostasis during ripening, we hypothesised the existence of a tonoplast transporter that exports GABA from the vacuole in exchange for import of either Asp or Glu. We show here that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans-stimulated in counterexchange mode by GABA, Glu and Asp. We identified SlCAT9 as a candidate protein for this exchanger using quantitative proteomics of a tonoplast-enriched membrane fraction. Transient expression of a SlCAT9-YFP fusion in tobacco confirmed a tonoplast localisation. The function of the protein was examined by overexpression of SlCAT9 in transgenic tomato plants. Tonoplast vesicles isolated from transgenic plants showed higher rates of Glu and GABA transport than wild-type (WT) only when assayed in counterexchange mode with Glu, Asp, or GABA. Moreover, there were substantial increases in the content of all three cognate amino acids in ripe fruit from the transgenic plants. We conclude that SlCAT9 is a tonoplast Glu/Asp/GABA exchanger that strongly influences the accumulation of these amino acids during fruit development.

Journal ArticleDOI
TL;DR: The option of generating rhodacyclopentanones dynamically provides a new facet to a growing area of catalysis and may find use as a (stereo)control strategy in other processes.
Abstract: Upon exposure to neutral or cationic Rh(I)-catalyst systems, amino-substituted cyclopropanes undergo carbonylative cycloaddition with tethered alkenes to provide stereochemically complex N-heterocyclic scaffolds. These processes rely upon the generation and trapping of rhodacyclopentanone intermediates, which arise by regioselective, Cbz-directed insertion of Rh and CO into one of the two proximal aminocyclopropane C-C bonds. For cyclizations using cationic Rh(I)-systems, synthetic and mechanistic studies indicate that rhodacyclopentanone formation is reversible and that the alkene insertion step determines product diastereoselectivity. This regime facilitates high levels of stereocontrol with respect to substituents on the alkene tether. The option of generating rhodacyclopentanones dynamically provides a new facet to a growing area of catalysis and may find use as a (stereo)control strategy in other processes.

Journal ArticleDOI
TL;DR: In this article, a clear definition of the delineation between the product system model (life cycle inventory, technosphere) and the natural environment (LCIA, ecosphere) is established via consensus building.
Abstract: Purpose Pesticides are applied to agricultural fields to optimise crop yield and their global use is substantial. Their consideration in life cycle assessment (LCA) is affected by important inconsistencies between the emission inventory and impact assessment phases of LCA. A clear definition of the delineation between the product system model (life cycle inventory—LCI, technosphere) and the natural environment (life cycle impact assessment—LCIA, ecosphere) is missing and could be established via consensus building. Methods Aworkshop held in 2013 in Glasgow, UK, had the goal of establishing consensus and creating clear guidelines in the following topics: (1) boundary between emission inventory and impact characterisation model, (2) spatial dimensions

Journal ArticleDOI
01 Mar 2015-Heredity
TL;DR: Genome-wide association mapping in combination with fivefold cross-validations was applied and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs), suggesting that relatedness is a main driver of the accuracy of prediction in marker- assisted selection of FHB resistance.
Abstract: Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker–trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.

Journal ArticleDOI
TL;DR: Stereochemical studies show, for the first time, that alkene insertion into rhodacyclopentanones can be reversible, and exposure of diverse N-cyclopropylacrylamides to phosphine-ligated cationic Rh(I) catalyst systems under a CO atmosphere enables the directed generation of rhodate-based intermediates.
Abstract: A short entry to substituted azocanes by a Rh-catalyzed cycloaddition–fragmentation process is described. Specifically, exposure of diverse N-cyclopropylacrylamides to phosphine-ligated cationic Rh(I) catalyst systems under a CO atmosphere enables the directed generation of rhodacyclopentanone intermediates. Subsequent insertion of the alkene component is followed by fragmentation to give the heterocyclic target. Stereochemical studies show, for the first time, that alkene insertion into rhodacyclopentanones can be reversible.

Journal ArticleDOI
TL;DR: It is shown here that typical NMR samples show measurable convective flow for all but a very narrow range of temperatures; convection is seen both above and below this range, which can be as small as a degree or so for a mobile solvent such as chloroform.

Journal ArticleDOI
TL;DR: The downy mildew pathogen, Pseudoperonospora cubensis, which infects plant species in the family Cucurbitaceae, has undergone major changes during the last decade and offers challenges to scientists in many research areas including pathogen biology, epidemiology and dispersal, population structure and population genetics, host preference, host-pathogen interactions and gene expression, genetic host plant resistance, inheritance of host and fungicide resistance, and chemical disease control.
Abstract: The downy mildew pathogen, Pseudoperonospora cubensis, which infects plant species in the family Cucurbitaceae, has undergone major changes during the last decade. Disease severity and epidemics are far more destructive than previously reported, and new genotypes, races, pathotypes, and mating types of the pathogen have been discovered in populations from around the globe as a result of the resurgence of the disease. Consequently, disease control through host plant resistance and fungicide applications has become more complex. This resurgence of P. cubensis offers challenges to scientists in many research areas including pathogen biology, epidemiology and dispersal, population structure and population genetics, host preference, host−pathogen interactions and gene expression, genetic host plant resistance, inheritance of host and fungicide resistance, and chemical disease control. This review serves to summarize the current status of this major pathogen and to guide future management and research efforts w...

Journal ArticleDOI
TL;DR: A simple process for batch or continuous formation of polymer nanofibers and other nanomaterials in the bulk of a sheared fluid medium is introduced and may be of high value to commercial nanotechnology, as it can be easily scaled up to the fabrication of staple nanofiber at rates that may exceed tens of kilograms per hour.
Abstract: A simple process for batch or continuous formation of polymer nanofibers and other nanomaterials in the bulk of a sheared fluid medium is introduced. The process may be of high value to commercial nanotechnology, as it can be easily scaled up to the fabrication of staple nanofibers at rates that may exceed tens of kilograms per hour.

Journal ArticleDOI
TL;DR: If other factors such as recessive inheritance of resistance and high level of refuge compliance are met, the risk of resistance to Vip3Aa20 in S. frugiperda populations in Brazil can be minimized.

Journal ArticleDOI
TL;DR: More than 300 monomeric compounds or active parts have been screened for pharmacological activities from Eupatorium in vivo and in vitro, and increasing amount of data supports application and exploitation for new drug development.
Abstract: Eupatorium (family: Compositae), which comprises nearly 1200 species, is distributed throughout tropical America, Europe, Africa, and Asia. Up to now, the reported constituents from the genus Eupatorium involve flavonoids, terpenoids, pyrrolizidine alkaloids, phenylpropanoids, quinonoids, essential oils, and some others, altogether more than 300 compounds. Studies have shown that Eupatorium and its active principles possess a wide range of pharmacological activities, such as cytotoxic, antifungal, insecticidal, antibacterial, anti-inflammatory, and antinociceptive activities. Currently, effective monomeric compounds or active parts have been screened for pharmacological activities from Eupatorium in vivo and in vitro. Increasing amount of data supports application and exploitation for new drug development.

Journal ArticleDOI
TL;DR: Structural optimization is still ongoing with the aim of discovering synthetic analogues with improved antifungal activity, and the seven compounds 10b, 10c, 11e, 13e, 21, 22c and 22e were identified as the most promising candidates for further study.

Journal ArticleDOI
TL;DR: This work presents comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs, of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants.
Abstract: Brassica napus (oilseed rape, canola) is one of the world's most important sources of vegetable oil for human nutrition and biofuel, and also a model species for studies investigating the evolutionary consequences of polyploidisation. Strong bottlenecks during its recent origin from interspecific hybridisation, and subsequently through intensive artificial selection, have severely depleted the genetic diversity available for breeding. On the other hand, high-throughput genome profiling technologies today provide unprecedented scope to identify, characterise and utilise genetic diversity in primary and secondary crop gene pools. Such methods also enable implementation of genomic selection strategies to accelerate breeding progress. The key prerequisite is availability of high-quality sequence data and identification of high-quality, genome-wide sequence polymorphisms representing relevant gene pools. We present comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs. The data is of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants.

Journal ArticleDOI
TL;DR: The outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology is summarized, with a focus on industrial applications.
Abstract: Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and research applications. However, scientific and technical hurdles must be overcome before SCD in vitro methods undergo appropriate validation and become accepted in the regulatory arena.

Journal ArticleDOI
19 Aug 2015-Chimia
TL;DR: New cost-efficient synthesis strategies for the preparation of o-biscyclopropyl-aniline, new benzonorbornene intermediates and the key pyrazole carboxylic acid intermediate which is essential for all three Syngenta SDHIs, will be in the focus of this review.
Abstract: Sedaxane (SDX) 1, isopyrazam (IZM) 2 and Solatenol™ (STL) 3 are broad-spectrum pyrazole carboxamides, which originate from novel chemical classes of fungicides. Their mode of action (MoA) is inhibition of succinate dehydrogenase (SDH), which was recognized for a long time to deliver only compounds with a narrow biological spectrum. This view changed with the market introduction of BASF's boscalid in 2003. All major agro-companies subsequently worked in parallel on this MoA successfully and recently introduced new compounds to the market. Syngenta entered the SDHI area in 1998 and was able to introduce three complementary compounds to the market between 2010 and 2012. In this short review some synthesis challenges and biological effects of SDX 1, IZM 2 and STL 3 will be covered. New cost-efficient synthesis strategies for the preparation of o-biscyclopropyl-aniline, new benzonorbornene intermediates and the key pyrazole carboxylic acid intermediate which is essential for all three Syngenta SDHIs, will be in the focus of this review.