scispace - formally typeset
Search or ask a question
Institution

Vikram Sarabhai Space Centre

FacilityThiruvananthapuram, India
About: Vikram Sarabhai Space Centre is a facility organization based out in Thiruvananthapuram, India. It is known for research contribution in the topics: Aerosol & Ultimate tensile strength. The organization has 2092 authors who have published 3058 publications receiving 47975 citations. The organization is also known as: VSSC.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, thermal degradation of poly(dimethylsilylene) homopolymer (PDMS) and poly(tetramethyldisilylene-co-styrene) copolymer (PTMDSS) was investigated by pyrolysis-gas chromatography and thermogravimetry.
Abstract: Thermal degradation of poly(dimethylsilylene) homopolymer (PDMS) and poly(tetramethyldisilylene-co-styrene) copolymer (PTMDSS) was investigated by pyrolysis-gas chromatography and thermogravimetry (TG). PDMS decomposes by depolymerization, producing linear and cyclic oligomeric products, whereas PTMDSS decomposes by random degradation along the chain resulting in each monomeric product and various other combination products. The homopolymer was found to be much less stable than the copolymer. The decomposition mechanisms leading to the formation of various products are shown. The kinetic parameters of thermal degradation were evaluated by different integral methods using TG data. The activation energies of decomposition (E) for the homopolymer and the copolymer are found to be 122 and 181 kJ/mol, respectively, and the corresponding values of order of reaction are 1 and 1.5. The observed difference in the thermal stability and the values of the kinetic parameters for decomposition of these polymers are explained in relation with the mechanism of decomposition. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006

30 citations

Journal ArticleDOI
TL;DR: In this paper, the ionospheric response features were analyzed during the periods of three recent and most severe magnetic storm events of the present solar cycle which occurred in October and November 2003, and November 2004.
Abstract: . For a detailed study of the space weather impact on the equatorial and low latitude F-region, the ionospheric response features are analysed during the periods of three recent and most severe magnetic storm events of the present solar cycle which occurred in October and November 2003, and November 2004. The F-layer base height (h'F), peak height (hmF2) and critical frequency (foF2) data, from Trivandrum, an equatorial station and Delhi, a low latitude location, are examined during the three magnetic storm periods. The results of the analysis clearly shows that the height of the F-region (both h'F and hmF2), at the equator and low latitude, simultaneously increases by 200 to 300 km, in association with maximum negative excursion of Dst values around the midnight hours with a large depletion of ionization over the equator, which is followed by an ionization enhancement at low latitude during the recovery phase of the storm. At Delhi, fast variations up to 200 m/s are also observed in the F-layer vertical upward/downward velocity, calculated using Doppler shifts, associated with the maximum negative excursion of Dst. This shows that during magnetic disturbances, the equatorial ionization anomaly (EIA) expands to a much wider latitude than the normal fountain driven by the E/F-layer dynamo electric fields. It is also observed that during the main phase of the storm, at low latitude there is generally an enhancement of F-region ionization with an increase in h'F/hmF2 but in the equatorial region, the ionization collapses with a decrease in h'F/hmF2, especially after sunset hours. In addition, at the equator the normal pre-sunset hours' enhancement in h'F is considerably suppressed during storm periods. This might be due to changes in magnitude and direction of the zonal electric field affecting the upward E×B drift and hence the plasma distribution in the form of a decrease in electron density in the equatorial region and an increase in the low latitude region. In association with disturbance electric fields, the enhanced storm-induced equatorward meridional winds in the thermosphere can also further amplify the F-layer height rise at low latitudes during the post-midnight hours, as observed in two of the storm periods.

30 citations

Journal ArticleDOI
TL;DR: In this paper, the aerosol direct radiative forcing impact on mean Indian summer monsoon was investigated when a combination of quasi-realistic mean annual cycles of scattering and absorbing aerosols derived from an aerosol transport model constrained with satellite observed Aerosol Optical Depth (AOD) is prescribed.
Abstract: Aerosol forcing remains a dominant uncertainty in climate studies. The impact of aerosol direct radiative forcing on Indian monsoon is extremely complex and is strongly dependent on the model, aerosol distribution and characteristics specified in the model, modelling strategy employed as well as on spatial and temporal scales. The present study investigates (i) the aerosol direct radiative forcing impact on mean Indian summer monsoon when a combination of quasi-realistic mean annual cycles of scattering and absorbing aerosols derived from an aerosol transport model constrained with satellite observed Aerosol Optical Depth (AOD) is prescribed, (ii) the dominant feedback mechanism behind the simulated impact of all-aerosol direct radiative forcing on monsoon and (iii) the relative impacts of absorbing and scattering aerosols on mean Indian summer monsoon. We have used CAM3, an atmospheric GCM (AGCM) that has a comprehensive treatment of the aerosol–radiation interaction. This AGCM has been used to perform climate simulations with three different representations of aerosol direct radiative forcing due to the total, scattering aerosols and black carbon aerosols. We have also conducted experiments without any aerosol forcing. Aerosol direct impact due to scattering aerosols causes significant reduction in summer monsoon precipitation over India with a tendency for southward shift of Tropical Convergence Zones (TCZs) over the Indian region. Aerosol forcing reduces surface solar absorption over the primary rainbelt region of India and reduces the surface and lower tropospheric temperatures. Concurrent warming of the lower atmosphere over the warm oceanic region in the south reduces the land–ocean temperature contrast and weakens the monsoon overturning circulation and the advection of moisture into the landmass. This increases atmospheric convective stability, and decreases convection, clouds, precipitation and associated latent heat release. Our analysis reveals a defining negative moisture-advection feedback that acts as an internal damping mechanism spinning down the regional hydrological cycle and leading to significant circulation changes in response to external radiative forcing perturbations. When total aerosol loading (both absorbing and scattering aerosols) is prescribed, dust and black carbon aerosols are found to cause significant atmospheric heating over the monsoon region but the aerosol-induced weakening of meridional lower tropospheric temperature gradient (leading to weaker summer monsoon rainfall) more than offsets the increase in summer-time rainfall resulting from the atmospheric heating effect of absorbing aerosols, leading to a net decrease of summer monsoon rainfall. Further, we have carried out climate simulations with globally constant AODs and also with the constant AODs over the extended Indian region replaced by realistic AODs. Regional aerosol radiative forcing perturbations over the Indian region is found to have impact not only over the region of loading but over remote tropical regions as well. This warrants the need to prescribe realistic aerosol properties in strategic regions such as India in order to accurately assess the aerosol impact.

29 citations

Journal ArticleDOI
TL;DR: In this article, nano crystalline High Entropy Alloys (HEA) with equi-atomic compositions were synthesized through mechanical alloying followed by Spark Plasma Sintering (SPS).

29 citations

Journal ArticleDOI
TL;DR: Aerosol spectral optical depth (AOD) measurements were made covering three years (2001, 2002 and 2003) at an urban continental location,Bangalore (13degrees N, 77.6degrees E) in India as discussed by the authors.
Abstract: Aerosol spectral optical depth (AOD) measurements were made covering three years (2001, 2002 and 2003) at an urban continental location,Bangalore (13degrees N, 77.6degrees E) in India. These ground-based observations have shown that AODs reach a maximum during April (similarto0.5 at 500 nm) and minimum during the November to January period(similar to0.2). The Angstrom wavelength exponent (ce) was - LI during the dry season (December to April), which, in conjunction with the highoptical depth indicates significant anthropogenic influence. Seasonal variations in AODs appear to have an association with monsoon rainfall.Large AODs (a-1.4) were observed during the rain-deficit summer monsoon season (SMS) of 2002, which persisted for more than six months.Enhancement in AODs during SMS 2002 was similar to0.15 (at 500 nm),compared to 2001 and 2003.

29 citations


Authors

Showing all 2111 results

NameH-indexPapersCitations
M. Santosh103134449846
Sabu Thomas102155451366
S. Suresh Babu7049817113
K. Krishna Moorthy542639749
Sathianeson Satheesh5317211099
M. Y. Hussaini4920716794
J.R. Banerjee441465620
C. P. Reghunadhan Nair371814825
K. N. Ninan361594156
Anil Bhardwaj352304527
Ivatury S. Raju331216626
Venkata Sai Kiran Chakravadhanula321023011
P.K. Sinha321182918
J.-P. St.-Maurice311133446
Subramaniam Gopalakrishnan281232951
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

85% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

84% related

Langley Research Center
37.6K papers, 821.6K citations

84% related

Indian Institute of Science
62.4K papers, 1.2M citations

82% related

Ames Research Center
35.8K papers, 1.3M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
202230
2021186
2020160
2019149
2018136