scispace - formally typeset
Search or ask a question

Showing papers in "Biological Reviews of The Cambridge Philosophical Society in 2017"


Journal ArticleDOI
TL;DR: It is argued that a culture of ‘you can publish if your study is rigorous’ creates a systematic bias against the null hypothesis which renders meta‐analyses questionable and may even lead to a situation where hypotheses become difficult to falsify.
Abstract: Recently there has been a growing concern that many published research findings do not hold up in attempts to replicate them. We argue that this problem may originate from a culture of 'you can publish if you found a significant effect'. This culture creates a systematic bias against the null hypothesis which renders meta-analyses questionable and may even lead to a situation where hypotheses become difficult to falsify. In order to pinpoint the sources of error and possible solutions, we review current scientific practices with regard to their effect on the probability of drawing a false-positive conclusion. We explain why the proportion of published false-positive findings is expected to increase with (i) decreasing sample size, (ii) increasing pursuit of novelty, (iii) various forms of multiple testing and researcher flexibility, and (iv) incorrect P-values, especially due to unaccounted pseudoreplication, i.e. the non-independence of data points (clustered data). We provide examples showing how statistical pitfalls and psychological traps lead to conclusions that are biased and unreliable, and we show how these mistakes can be avoided. Ultimately, we hope to contribute to a culture of 'you can publish if your study is rigorous'. To this end, we highlight promising strategies towards making science more objective. Specifically, we enthusiastically encourage scientists to preregister their studies (including a priori hypotheses and complete analysis plans), to blind observers to treatment groups during data collection and analysis, and unconditionally to report all results. Also, we advocate reallocating some efforts away from seeking novelty and discovery and towards replicating important research findings of one's own and of others for the benefit of the scientific community as a whole. We believe these efforts will be aided by a shift in evaluation criteria away from the current system which values metrics of 'impact' almost exclusively and towards a system which explicitly values indices of scientific rigour.

291 citations


Journal ArticleDOI
TL;DR: It is concluded that climatic variability represents an important component of climate that deserves further attention and can have profound influences on biological processes at multiple scales of organization.
Abstract: While average temperature is likely to increase in most locations on Earth, many places will simultaneously experience higher variability in temperature, precipitation, and other climate variables. Although ecologists and evolutionary biologists widely recognize the potential impacts of changes in average climatic conditions, relatively little attention has been paid to the potential impacts of changes in climatic variability and extremes. We review the evidence on the impacts of increased climatic variability and extremes on physiological, ecological and evolutionary processes at multiple levels of biological organization, from individuals to populations and communities. Our review indicates that climatic variability can have profound influences on biological processes at multiple scales of organization. Responses to increased climatic variability and extremes are likely to be complex and cannot always be generalized, although our conceptual and methodological toolboxes allow us to make informed predictions about the likely consequences of such climatic changes. We conclude that climatic variability represents an important component of climate that deserves further attention.

190 citations


Journal ArticleDOI
TL;DR: It is suggested that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly.
Abstract: The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly.

141 citations


Journal ArticleDOI
TL;DR: Evidence that parental environment‐induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex‐specific effects in nematodes, fruit flies, zebrafish, rodents, and humans is summarized.
Abstract: Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non-genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non-DNA sequence-based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment-induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non-coding RNAs, are also summarized. We particularly focus on evidence that parental environment-induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex-specific effects. The thought-provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome-wide level and single-cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment-induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non-mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene-environment interactions shape developmental processes and physiological functions, which in turn may have wide-ranging implications for human health, and understanding biological adaptation and evolution.

126 citations


Journal ArticleDOI
TL;DR: It is suggested that a temporary or permanent release from stress in invaded habitats may alleviate the negative effects of genetic depletion on fitness via I × E interactions, and published empirical evidence supporting this hypothesis is presented.
Abstract: Invasive species that successfully establish, persist, and expand within an area of introduction, in spite of demographic bottlenecks that reduce their genetic diversity, represent a paradox. Bottlenecks should inhibit population growth and invasive expansion, as a decrease in genetic diversity should result in inbreeding depression, increased fixation of deleterious mutations by genetic drift (drift load), and reduced evolutionary potential to respond to novel selection pressures. Here, we focus on the problems of inbreeding depression and drift load in introduced populations as key components of the Genetic Paradox of Invasions (GPI). We briefly review published explanations for the GPI, which are based on various mechanisms (invasion history events, reproductive traits, genetic characteristics) that mediate the avoidance of inbreeding depression and drift load. We find that there is still a substantial lack of explanation and empirical evidence for explaining the GPI for strongly bottlenecked invasions, or for during critical invasion phases (e.g. initial colonization, leading edges of range expansion) where strong genetic depletion, inbreeding depression and drift load occurs. Accordingly, we suggest that discussion of the GPI should be revived to find additional mechanisms applicable to explaining invasion success for such species and invasion phases. Based on a synthesis of the literature on the population genetics of invaders and the ecology of invaded habitats, we propose that inbreeding × environment (I × E) interactions are one such mechanism that may have strong explanatory power to address the GPI. Specifically, we suggest that a temporary or permanent release from stress in invaded habitats may alleviate the negative effects of genetic depletion on fitness via I × E interactions, and present published empirical evidence supporting this hypothesis. We additionally discuss that I × E interactions can result in rapid evolutionary changes, and may even contribute to adaptation of invaders in the absence of high genetic variation. With a view to encouraging further empirical research, we propose an experimental approach to investigate the occurrence of I × E interactions in ongoing invasions. Revived research on the GPI should provide new fundamental insights into eco-evolutionary invasion biology, and more generally into the evolutionary consequences of the interactions between inbreeding and environment.

103 citations


Journal ArticleDOI
TL;DR: A three-phase iterative model describing how endothermy evolved from Permian ectothermic ancestors is presented in this paper, where the elevation of end-othermy-increased metabolism and body temperature (Tb )-complemented large-body-size homeothermy during the permian and Triassic in response to the fitness benefits of enhanced embryo development (parental care) and the activity demands of conquering dry land.
Abstract: Recent palaeontological data and novel physiological hypotheses now allow a timescaled reconstruction of the evolution of endothermy in birds and mammals. A three-phase iterative model describing how endothermy evolved from Permian ectothermic ancestors is presented. In Phase One I propose that the elevation of endothermy - increased metabolism and body temperature (Tb ) - complemented large-body-size homeothermy during the Permian and Triassic in response to the fitness benefits of enhanced embryo development (parental care) and the activity demands of conquering dry land. I propose that Phase Two commenced in the Late Triassic and Jurassic and was marked by extreme body-size miniaturization, the evolution of enhanced body insulation (fur and feathers), increased brain size, thermoregulatory control, and increased ecomorphological diversity. I suggest that Phase Three occurred during the Cretaceous and Cenozoic and involved endothermic pulses associated with the evolution of muscle-powered flapping flight in birds, terrestrial cursoriality in mammals, and climate adaptation in response to Late Cenozoic cooling in both birds and mammals. Although the triphasic model argues for an iterative evolution of endothermy in pulses throughout the Mesozoic and Cenozoic, it is also argued that endothermy was potentially abandoned at any time that a bird or mammal did not rely upon its thermal benefits for parental care or breeding success. The abandonment would have taken the form of either hibernation or daily torpor as observed in extant endotherms. Thus torpor and hibernation are argued to be as ancient as the origins of endothermy itself, a plesiomorphic characteristic observed today in many small birds and mammals.

96 citations


Journal ArticleDOI
TL;DR: Although progress has been made applying 3D technology to CSC research, this technology could be further utilized and a greater number of 3D kits dedicated specifically to C SCs should be implemented.
Abstract: Three-dimensional (3D) cell culture models are becoming increasingly popular in contemporary cancer research and drug resistance studies. Recently, scientists have begun incorporating cancer stem cells (CSCs) into 3D models and modifying culture components in order to mimic in vivo conditions better. Currently, the global cell culture market is primarily focused on either 3D cancer cell cultures or stem cell cultures, with less focus on CSCs. This is evident in the low product availability officially indicated for 3D CSC model research. This review discusses the currently available commercial products for CSC 3D culture model research. Additionally, we discuss different culture media and components that result in higher levels of stem cell subpopulations while better recreating the tumor microenvironment. In summary, although progress has been made applying 3D technology to CSC research, this technology could be further utilized and a greater number of 3D kits dedicated specifically to CSCs should be implemented.

95 citations


Journal ArticleDOI
TL;DR: The largest cladistic analysis of Paleocene placentals to date is presented, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters, and supports an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, and the validity of Euungulata.
Abstract: The 'Age of Mammals' began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous-Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of 'condylarths'. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous-Palaeogene boundary. Our results support an Atlantogenata-Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end-Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.

92 citations


Journal ArticleDOI
TL;DR: The uropygial gland appears to have several non‐mutually exclusive functions in birds, and thus is likely to be subject to several selective pressures, and future studies should consider how the inevitable trade‐offs among different functions drive the evolution of uropyGial gland secretions.
Abstract: The uropygial gland is a holocrine complex exclusive to birds that produces an oleaginous secretion (preen oil) whose function is still debated. Herein, I examine critically the evidence for the many hypotheses of potential functions of this gland. The main conclusion is that our understanding of this gland is still in its infancy. Even for functions that are considered valid by most researchers, real evidence is scarce. Although it seems clear that preen oil contributes to plumage maintenance, we do not know whether this is due to a role in reducing mechanical abrasion or in reducing feather degradation by keratinophilic organisms. Evidence for a function against pathogenic bacteria is mixed, as preen oil has been demonstrated to act against bacteria in vitro, but not in vivo. Nor is it clear whether preen oil can combat pathogenic bacteria on eggshells to improve hatching success. Studies on the effect of preen oil against dermatophytes are very scarce and there is no evidence of a function against chewing lice. It seems clear, however, that preen oil improves waterproofing, but it is unclear whether this acts by creating a hydrophobic layer or simply by improving plumage structure. Several hypotheses proposed for the function of preen oil have been poorly studied, such as reduction of drag in flight. Similarly, we do not know whether preen oil functions as repellent against predators or parasites, makes birds unpalatable, or functions to camouflage birds with ambient odours. On the other hand, a growing body of work shows the important implications of volatiles in preen oil with regard to social communication in birds. Moreover, preen oil clearly alters plumage colouration. Finally, studies examining the impact of preen oil on fitness are lacking, and the costs or limitations of preen-oil production also remain poorly known. The uropygial gland appears to have several non-mutually exclusive functions in birds, and thus is likely to be subject to several selective pressures. Therefore, future studies should consider how the inevitable trade-offs among different functions drive the evolution of uropygial gland secretions.

85 citations


Journal ArticleDOI
TL;DR: It is suggested that song may be the prime vector recruiting colonists to new winter grounds pioneered by vagrant males as population pressures increase or as former winter grounds become unavailable or undesirable, with such instances documented relatively recently.
Abstract: Humpback whales (Megaptera novaeangliae) are seasonal breeders, annually migrating from high-latitude summer feeding grounds to low-latitude winter breeding grounds. The social matrix on the winter grounds is a loose network of interacting individuals and groups and notably includes lone males that produce long bouts of complex song that collectively yield an asynchronous chorus. Occasionally, a male will sing while accompanying other whales. Despite a wealth of knowledge about the social matrix, the full characterization of the mating system remains unresolved, without any firm consensus, as does the function of song within that system. Here, I consider and critically analyse three proposed functions of song that have received the most attention in the literature: female attraction to individual singers, determining or facilitating male-male interactions, and attracting females to a male aggregation within the context of a lekking system. Female attraction suggests that humpback song is an advertisement and invitation to females, but field observations and song playback studies reveal that female visits to individual singers are virtually absent. Other observations suggest instead that females might convey their presence to singers (or to other males) through the percussive sounds of flipper or tail slapping or possibly through vocalizations. There is some evidence for male-male interactions, both dominance and affiliative: visits to singers are almost always other lone males not singing at that time. The joiner may be seeking a coalition with the singer to engage cooperatively in attempts to obtain females, or may be seeking to disrupt the song or to affirm his dominance. Some observations support one or the other intent. However, other observations, in part based on the brevity of most pairings, suggest that the joiner is prospecting, seeking to determine whether the singer is accompanying a female, and if not soon departs. In the lekking hypothesis, the aggregation of vocalizing males on a winter ground and the visits there by non-maternal females apparently for mating meet the fundamental definition of a lekking system and its role though communal display in attracting females to the aggregation, although not to an individual singer. Communal singing is viewed as a form of by-product mutualism in which individuals benefit one another as incidental consequences of their own selfish actions. Possibly, communal singing may also act to stimulate female receptivity. Thus, there are both limitations and merit in all three proposals. Full consideration of song as serving multiple functions is therefore necessary to understand its role in the mating system and the forces acting on the evolution of song. I suggest that song may be the prime vector recruiting colonists to new winter grounds pioneered by vagrant males as population pressures increase or as former winter grounds become unavailable or undesirable, with such instances documented relatively recently. Speculatively, song may have evolved historically as an aggregating call during the dynamic ocean conditions and resulting habitat uncertainties in the late Miocene-early Pliocene epochs when Megaptera began to proliferate. Early song may have been comprised of simpler precursor sounds that through natural selection and ritualization evolved into complex song.

84 citations


Journal ArticleDOI
TL;DR: The past, present and future of an ancient grain with a potential beyond its size, teff is presented, a warm‐season annual cereal with the tiniest grain in the world.
Abstract: There are more than 50000 known edible plants in the world, yet two-thirds of global plant-derived food is provided by only three major cereals - maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm-season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture-stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought-after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its 'orphan crop' status. This review presents the past, present and future of an ancient grain with a potential beyond its size.

Journal ArticleDOI
TL;DR: A comprehensive overview of recent advances in research on traps of NTF is provided based on genomic, proteomic and transcriptomic analyses.
Abstract: Nematode-trapping fungi (NTF) are potential biological control agents against plant- and animal-parasitic nematodes. These fungi produce diverse trapping devices (traps) to capture, kill, and digest nematodes as food sources. Most NTF can live as both saprophytes and parasites. Traps are not only the weapons that NTF use to capture and infect nematodes, but also an important indicator of their switch from a saprophytic to a predacious lifestyle. Formation of traps and their numbers are closely related to the nematicidal activity of NTF, so the mechanisms governing trap formation have become a focus of research on NTF. Recently, much progress has been made in our understanding of trap formation, evolution, and the genome, proteome and transcriptome of NTF. Here we provide a comprehensive overview of recent advances in research on traps of NTF. Various inducers of trap formation, trap development, structural properties and evolution of traps are summarized and discussed. We specifically discuss the latest studies of NTF based on genomic, proteomic and transcriptomic analyses.

Journal ArticleDOI
TL;DR: The IT floristic region is introduced to a broader audience of evolutionary, ecological and systematic biologists, thus promoting cutting‐edge research on this area and raising awareness of this vast and diverse, yet understudied, part of the world.
Abstract: Ever since the 19th century, the immense arid lands of the Orient, now called the Irano-Turanian (IT) floristic region, attracted the interest of European naturalists with their tremendous plant biodiversity. Covering approximately 30% of the surface of Eurasia (16000000 km2 ), the IT region is one of the largest floristic regions of the world. The IT region represents one of the hotspots of evolutionary and biological diversity in the Old World, and serves as a source of xerophytic taxa for neighbouring regions. Moreover, it is the cradle of the numerous species domesticated in the Fertile Crescent. Over the last 200 years, naturalists outlined different borders for the IT region. Yet, the delimitation and evolutionary history of this area remain one of the least well-understood fields of global biogeography, even though it is crucial to explaining the distribution of life in Eurasia. No comprehensive review of the biogeographical delimitations nor of the role of geological and climatic changes in the evolution of the IT region is currently available. After considering the key role of floristic regions in biogeography, we review the history of evolving concepts about the borders and composition of the IT region over the past 200 years and outline a tentative circumscription for it. We also summarise current knowledge on the geological and climatic history of the IT region. We then use this knowledge to generate specific evolutionary hypotheses to explain how different geological, palaeoclimatic, and ecological factors contributed to range expansion and contraction, thus shaping patterns of speciation in the IT region over time and space. Both historical and ecological biogeography should be applied to understand better the floristic diversification of the region. This will ultimately require evolutionary comparative analyses based on integrative phylogenetic, geological, climatic, ecological, and species distribution studies on the region. Furthermore, an understanding of evolutionary and ecological processes will play a major role in regional planning for protecting biodiversity of the IT region in facing climatic change. With this review, we aim to introduce the IT floristic region to a broader audience of evolutionary, ecological and systematic biologists, thus promoting cutting-edge research on this area and raising awareness of this vast and diverse, yet understudied, part of the world.

Journal ArticleDOI
TL;DR: The available data on chromosomal polymorphisms in mammals is reviewed to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change and several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species.
Abstract: Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non-meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species.

Journal ArticleDOI
TL;DR: The mechanisms by which non‐avian reptiles store, transport, and use lipids are reviewed, including the hepatic synthesis oflipids from glucose substrates, the transport of triglycerides in lipoproteins, and the storage of lipids in adipose tissue, which suggest that lipid storage is primarily for reproduction in most species, rather than for maintenance during aphagic periods.
Abstract: Lipid metabolism is central to understanding whole-animal energetics. Reptiles store most excess energy in lipid form, mobilise those lipids when needed to meet energetic demands, and invest lipids in eggs to provide the primary source of energy to developing embryos. Here, I review the mechanisms by which non-avian reptiles store, transport, and use lipids. Many aspects of lipid absorption, transport, and storage appear to be similar to birds, including the hepatic synthesis of lipids from glucose substrates, the transport of triglycerides in lipoproteins, and the storage of lipids in adipose tissue, although adipose tissue in non-avian reptiles is usually concentrated in abdominal fat bodies or the tail. Seasonal changes in fat stores suggest that lipid storage is primarily for reproduction in most species, rather than for maintenance during aphagic periods. The effects of fasting on plasma lipid metabolites can differ from mammals and birds due to the ability of non-avian reptiles to reduce their metabolism drastically during extended fasts. The effect of fasting on levels of plasma ketones is species specific: β-hydroxybutyrate concentration may rise or fall during fasting. I also describe the process by which the bulk of lipids are deposited into oocytes during vitellogenesis. Although this process is sometimes ascribed to vitellogenin-based transport in reptiles, the majority of lipid deposition occurs via triglycerides packaged in very-low-density lipoproteins (VLDLs), based on physiological, histological, biochemical, comparative, and genomic evidence. I also discuss the evidence for non-avian reptiles using ‘yolk-targeted’ VLDLs during vitellogenesis. The major physiological states – feeding, fasting, and vitellogenesis – have different effects on plasma lipid metabolites, and I discuss the possibilities and potential problems of using plasma metabolites to diagnose feeding condition in non-avian reptiles.

Journal ArticleDOI
TL;DR: Pronounced non‐genetic polymorphisms, or polyphenisms, occur in some monogonont rotifers reproducing by diploid, female parthenogenesis and for the first time, these polymorphisms are reviewed together and compared regarding a number of features associated with transitions from default to induced morphs.
Abstract: Pronounced non-genetic polymorphisms, or polyphenisms, occur in some monogonont rotifers reproducing by diploid, female parthenogenesis. In many brachionids, there is great variation in spine length. In trimorphic species of Asplanchna, females can vary in size and shape, from a small saccate morph to giant cruciform and campanulate morphs. In species that also reproduce sexually, diploid eggs can develop into two types of females. Amictic females produce diploid eggs that develop parthenogenetically into females; mictic females produce haploid eggs that develop parthenogenetically into males or, if fertilized, into resting eggs. In a species of Synchaeta, amictic females produce diploid eggs that can be either thin-shelled and subitaneous or thicker-shelled and diapausing. In all cases, morph determination occurs during the oogenesis or embryological development of diploid eggs in the maternal body cavity. For the first time, these polymorphisms are reviewed together and compared regarding a number of features associated with transitions from default to induced morphs: (i) type of variation (morphological, physiological, or both; continuous or discrete); (ii) inducing signal (environmental, endogenous, or both); (iii) universality of response to that signal (all or only some individuals); (iv) fitness cost; (v) reversibility; and (vi) ecological significance. Most of the polymorphisms fall into two major categories regarding these features. Transitions suitable for predictable environments involve: universal responses to environmental signals; continuous morphological variation; low reproductive cost; rapid reversibility; and adaptations for defence, hydrodynamics or prey ingestion. Transitions suitable for unpredictable environments are bet-hedging strategies and usually involve: partial (stochastic) responses to environmental or endogenous signals; discontinuous physiological variation; initiation of diapause, and thus high reproductive cost and slow reversibility. Two cases of morphological variation also involve the simultaneous production of different morphs and likely are adaptations for an uncertain future: continuous spine-length variation due to maternal age in Brachionus calyciflorus, and production of discrete cruciform and campanulate females in Asplanchna spp.

Journal ArticleDOI
TL;DR: An overview of what is known about the role of oxytocin in the human–dog bond and canine separation anxiety is provided, and considerations for future research looking to integrate Oxytocin into behavioural treatment are discussed.
Abstract: The hormone oxytocin plays an important role in attachment formation and bonding between humans and domestic dogs. Recent research has led to increased interest in potential applications for intranasal oxytocin to aid with the treatment of psychological disorders in humans. While a few studies have explored the effects of intranasally administered oxytocin on social cognition and social bonding in dogs, alternative applications have not yet been explored for the treatment of behavioural problems in this species. One potentially important application for intranasal oxytocin in dogs could be the treatment of separation anxiety, a common attachment disorder in dogs. Here we provide an overview of what is known about the role of oxytocin in the human-dog bond and canine separation anxiety, and discuss considerations for future research looking to integrate oxytocin into behavioural treatment based on recent findings from both the human and dog literature.

Journal ArticleDOI
TL;DR: A comprehensive review of 74 papers on fault bar formation is provided in hopes of providing a clearer approach to their study and proposes a tentative model where fault bars of different severity are the outcome of the interaction between the propensity to produce fault bars and the intensity of the perturbation.
Abstract: Fault bars are narrow malformations in feathers oriented almost perpendicular to the rachis where the feather vein and even the rachis may break. Breaks in the barbs and barbules result in small pieces of the feather vein being lost, while breaks in the rachis result in loss of the distal portion of the feather. Here, we provide a comprehensive review of 74 papers on fault bar formation in hopes of providing a clearer approach to their study. First, we review the evidence that the propensity to develop fault bars is modified by natural selection. Given that fault bars persist in the face of survival costs, we conclude that they must be an unfortunate consequence of some alternative adaptation that outweighs the fitness costs of fault bars. Second, we summarize evidence that the development of fault bars is triggered by psychological stress such as that of handling or predation attempts, and that they persist because the sudden contractions of the muscles in the feather follicle that control fright moults also causes the development of fault bars in growing feathers. Third, we review external and physiological (e.g. corticosterone) agents that may affect the likelihood that an acute stress will result in a growing feather exhibiting a fault bar. These modifying factors have often been treated as fundamental causes in the earlier literature on fault bars. Fourth, we then use this classification to propose a tentative model where fault bars of different severity (from light to severe) are the outcome of the interaction between the propensity to produce fault bars (which differs between species, individuals and feather follicles within individuals) and the intensity of the perturbation. This model helps to explain contradictory results in the literature, to identify gaps in our knowledge, and to suggest further studies. Lastly, we discuss ways in which better understanding of fault bars can inform us about other aspects of avian evolutionary ecology, such as the physiology of moult, the integration of moult into avian life cycles, and the strategies used to minimize stress during moult. Moreover, the study of fault bars may be relevant to understanding the aerodynamics of flight and the early evolution of flight.

Journal ArticleDOI
TL;DR: Overall, the origin and function of fused cervical vertebrae is poorly understood, emphasizing the need for future comparative biomechanical studies interpreted in an evolutionary context.
Abstract: The evolution of vertebral fusion is a poorly understood phenomenon that results in the loss of mobility between sequential vertebrae. Non-pathological fusion of the anterior cervical vertebrae has evolved independently in numerous extant and extinct mammals and reptiles, suggesting that the formation of a 'syncervical' is an adaptation that arose to confer biomechanical advantage(s) in these lineages. We review syncervical anatomy and evolution in a broad phylogenetic context for the first time and provide a comprehensive summary of proposed adaptive hypotheses. The syncervical generally consists of two vertebrae (e.g. hornbills, porcupines, dolphins) but can include fusion of seven cervical vertebrae in some cetaceans. Based on the ecologies of taxa with this trait, cervical fusion most often occurs in fossorial and pelagic taxa. In fossorial taxa, the syncervical likely increases the out-lever force during head-lift digging. In cetaceans and ricochetal rodents, the syncervical may stabilize the head and neck during locomotion, although considerable variation exists in its composition without apparent variability in locomotion. Alternatively, the highly reduced cervical vertebral centra may require fusion to prevent mechanical failure of the vertebrae. In birds, the syncervical of hornbills may have evolved in response to their unique casque-butting behaviour, or due to increased head mass. The general correlation between ecological traits and the presence of a syncervical in extant taxa allows more accurate interpretation of extinct animals that also exhibit this unique trait. For example, syncervicals evolved independently in several groups of marine reptiles and may have functioned to stabilize the head at the craniocervical joint during pelagic locomotion, as in cetaceans. Overall, the origin and function of fused cervical vertebrae is poorly understood, emphasizing the need for future comparative biomechanical studies interpreted in an evolutionary context.

Journal ArticleDOI
TL;DR: Findings that establish proteolytic degradation of damaged proteins by the Lon protease as a vital mechanism to maintain protein homeostasis within the peroxisome are summarized.
Abstract: Peroxisomes are ubiquitous eukaryotic organelles with the primary role of breaking down very long- and branched-chain fatty acids for subsequent β-oxidation in the mitochondrion. Like mitochondria, peroxisomes are major sites for oxygen utilization and potential contributors to cellular oxidative stress. The accumulation of oxidatively damaged proteins, which often develop into inclusion bodies (of oxidized, aggregated, and cross-linked proteins) within both mitochondria and peroxisomes, results in loss of organelle function that may contribute to the aging process. Both organelles possess an isoform of the Lon protease that is responsible for degrading proteins damaged by oxidation. While the importance of mitochondrial Lon (LonP1) in relation to oxidative stress and aging has been established, little is known regarding the role of LonP2 and aging-related changes in the peroxisome. Recently, peroxisome dysfunction has been associated with aging-related diseases indicating that peroxisome maintenance is a critical component of 'healthy aging'. Although mitochondria and peroxisomes are both needed for fatty acid metabolism, little work has focused on understanding the relationship between these two organelles including how age-dependent changes in one organelle may be detrimental for the other. Herein, we summarize findings that establish proteolytic degradation of damaged proteins by the Lon protease as a vital mechanism to maintain protein homeostasis within the peroxisome. Due to the metabolic coordination between peroxisomes and mitochondria, understanding the role of Lon in the aging peroxisome may help to elucidate cellular causes for both peroxisome and mitochondrial dysfunction.

Journal ArticleDOI
TL;DR: How the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management programs are described.
Abstract: Sex-determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex-determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature-dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco-evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management programs.

Journal ArticleDOI
TL;DR: The path followed by the inspired air in the lung–air sac system is now known to be controlled by a mechanism of aerodynamic valving and not by anatomical valves or sphincters, as was previously supposed.
Abstract: Among the extant air-breathing vertebrates, the avian respiratory system is structurally the most complex and functionally the most efficient gas exchanger. Having been investigated for over four centuries, some aspects of its biology have been extremely challenging and highly contentious and others still remain unresolved. Here, while assessing the most recent findings, four notable aspects of the structure and function of the avian respiratory system are examined critically to highlight the questions, speculations, controversies and debates that have arisen from past research. The innovative techniques and experiments that were performed to answer particular research questions are emphasised. The features that are outlined here concern the arrangement of the airways, the path followed by the inspired air, structural features of the lung and the air and blood capillaries, and the level of cellular defence in the avian respiratory system. Hitherto, based on association with the proven efficiency of naturally evolved and human-made counter-current exchange systems rather than on definite experimental evidence, a counter-current gas exchange system was suggested to exist in the avian respiratory system and was used to explain its exceptional efficiency. However, by means of an elegant experiment in which the direction of the air-flow in the lung was reversed, a cross-current system was shown to be in operation instead. Studies of the arrangement of the airways and the blood vessels corroborated the existence of a cross-current system in the avian lung. While the avian respiratory system is ventilated tidally, like most other invaginated gas exchangers, the lung, specifically the paleopulmonic parabronchi, is ventilated unidirectionally and continuously in a caudocranial (back-to-front) direction by synchronized actions of the air sacs. The path followed by the inspired air in the lung-air sac system is now known to be controlled by a mechanism of aerodynamic valving and not by anatomical valves or sphincters, as was previously supposed. The structural strength of the air and blood capillaries is derived from: the interdependence between the air and blood capillaries; a tethering effect between the closely entwined respiratory units; the presence of epithelial-epithelial cell connections (retinacula or cross-bridges) that join the blood capillaries while separating the air capillaries; the abundance and intricate arrangement of the connective tissue elements, i.e. collagen, elastin, and smooth muscle fibres; the presence of type-IV collagen, especially in the basement membranes of the blood-gas barrier and the epithelial-epithelial cell connections; and a putative tensegrity state in the lung. Notwithstanding the paucity of free surface pulmonary macrophages, the respiratory surface of the avian lung is well protected from pathogens and particulates by an assortment of highly efficient phagocytic cells. In commercial poultry production, instead of weak pulmonary cellular defence, stressful husbandry practices such as overcrowding, force-feeding, and intense genetic manipulation for rapid weight gain and egg production may account for the reported susceptibility of birds to aerosol-transmitted diseases.

Journal ArticleDOI
TL;DR: A mosaic evolution hypothesis is put forward, which posits that different types of MNs may have evolved at different rates within and among species, and represents an alternative to both adaptationist and associative models.
Abstract: Considering the properties of mirror neurons (MNs) in terms of development and phylogeny, we offer a novel, unifying, and testable account of their evolution according to the available data and try to unify apparently discordant research, including the plasticity of MNs during development, their adaptive value and their phylogenetic relationships and continuity. We hypothesize that the MN system reflects a set of interrelated traits, each with an independent natural history due to unique selective pressures, and propose that there are at least three evolutionarily significant trends that gave raise to three subtypes: hand visuomotor, mouth visuomotor, and audio–vocal. Specifically, we put forward a mosaic evolution hypothesis, which posits that different types of MNs may have evolved at different rates within and among species. This evolutionary hypothesis represents an alternative to both adaptationist and associative models. Finally, the review offers a strong heuristic potential in predicting the circumstances under which specific variations and properties of MNs are expected. Such predictive value is critical to test new hypotheses about MN activity and its plastic changes, depending on the species, the neuroanatomical substrates, and the ecological niche.

Journal ArticleDOI
TL;DR: This review focuses on the biology of and insights into the molecular mechanisms of separase as an oncogene, and its significance and implications for human cancers.
Abstract: Separase, an enzyme that resolves sister chromatid cohesion during the metaphase-to-anaphase transition, plays a pivotal role in chromosomal segregation and cell division. Separase protein, encoded by the extra spindle pole bodies like 1 (ESPL1) gene, is overexpressed in numerous human cancers including breast, bone, brain, and prostate. Separase is oncogenic, and its overexpression is sufficient to induce mammary tumours in mice. Either acute or chronic overexpression of separase in mouse mammary glands leads to aneuploidy and tumorigenesis, and inhibition of separase enzymatic activity decreases the growth of human breast tumour xenografts in mice. This review focuses on the biology of and insights into the molecular mechanisms of separase as an oncogene, and its significance and implications for human cancers.

Journal ArticleDOI
TL;DR: It is shown that the number of current control subjects can be reduced by more than half by including historical controls in the analyses, and how different assumptions about historical controls affect the power of statistical tests is quantified.
Abstract: Reducing the number of animal subjects used in biomedical experiments is desirable for ethical and practical reasons. Previous reviews of the benefits of reducing sample sizes have focused on improving experimental designs and methods of statistical analysis, but reducing the size of control groups has been considered rarely. We discuss how the number of current control animals can be reduced, without loss of statistical power, by incorporating information from historical controls, i.e. subjects used as controls in similar previous experiments. Using example data from published reports, we describe how to incorporate information from historical controls under a range of assumptions that might be made in biomedical experiments. Assuming more similarities between historical and current controls yields higher savings and allows the use of smaller current control groups. We conducted simulations, based on typical designs and sample sizes, to quantify how different assumptions about historical controls affect the power of statistical tests. We show that, under our simulation conditions, the number of current control subjects can be reduced by more than half by including historical controls in the analyses. In other experimental scenarios, control groups may be unnecessary. Paying attention to both the function and to the statistical requirements of control groups would result in reducing the total number of animals used in experiments, saving time, effort and money, and bringing research with animals within ethically acceptable bounds.

Journal ArticleDOI
TL;DR: The crown groups of most avian taxa that already existed in early Eocene forests are species‐poor, which does not support the hypothesis that the antiquity of tropical ecosystems is key to the diversity of tropical avifaunas, and suggests that high diversification rates may be of greater significance.
Abstract: Birds play an important role in studies addressing the diversity and species richness of tropical ecosystems, but because of the poor avian fossil record in all extant tropical regions, a temporal perspective is mainly provided by divergence dates derived from calibrated molecular analyses. Tropical ecosystems were, however, widespread in the Northern Hemisphere during the early Cenozoic, and the early Eocene German fossil site Messel in particular has yielded a rich avian fossil record. The Messel avifauna is characterized by a considerable number of flightless birds, as well as a high diversity of aerial insectivores and the absence of large arboreal birds. With about 70 currently known species in 42 named genus-level and at least 39 family-level taxa, it approaches extant tropical biotas in terms of species richness and taxonomic diversity. With regard to its taxonomic composition and presumed ecological characteristics, the Messel avifauna is more similar to the Neotropics, Madagascar, and New Guinea than to tropical forests in continental Africa and Asia. Because the former regions were geographically isolated during most of the Cenozoic, their characteristics may be due to the absence of biotic factors, especially those related to the diversification of placental mammals, which impacted tropical avifaunas in Africa and Asia. The crown groups of most avian taxa that already existed in early Eocene forests are species-poor. This does not support the hypothesis that the antiquity of tropical ecosystems is key to the diversity of tropical avifaunas, and suggests that high diversification rates may be of greater significance.

Journal ArticleDOI
TL;DR: A closer examination of the functional pathways of VDACs indicates that the unique functions of V DAC2 are a result of the different interactome of this isoform, and it is suggested that the VDac isoforms now be considered as paralogs.
Abstract: Voltage-dependent anion channels (VDACs) are the gateway to mitochondrial processes, interlinking the cytosolic and mitochondrial compartments. The mitochondrion acts as a storehouse for cytochrome c, the effector of apoptosis, and hence VDACs become intricately involved in the apoptotic pathway. Isoform 1 of VDAC is abundant in the outer mitochondrial membrane of many cell types, while isoform 2 is the preferred channel in specialized cells including brain and some cancer cells. The primary role of VDACs is metabolite flux. The pro- and anti-apoptotic role of VDAC1 and VDAC2, respectively, are secondary, and are influenced by external factors and interacting proteins. Herein, we focus on the less-studied VDAC2, and shed light on its unique functions and features. VDAC2, along with sharing many of its functions with VDAC1, such as metabolite and Ca2+ transport, also has many delineating functions. VDAC2 is closely engaged in the gametogenesis and steroidogenesis pathways and in protection from oxidative stress as well as in neurodegenerative diseases like Alzheimer's and epilepsy. A closer examination of the functional pathways of VDACs indicates that the unique functions of VDAC2 are a result of the different interactome of this isoform. We couple functional differences to the structural and biophysical evidence obtained for the VDACs, and present a testament of why the two VDAC isoforms with >90% sequence similarity, are functionally diverse. Based on these differences, we suggest that the VDAC isoforms now be considered as paralogs. An in-depth understanding of VDAC2 will help us to design better biomolecule targets for cancer and neurodegenerative diseases.

Journal ArticleDOI
TL;DR: An overview of the complicated network of microRNAs and their target genes that have previously been implicated in cardiogenesis and hypertrophy is presented and it is interesting to note that micro RNAs in both of these growth processes can be of possible remedial value to counter a similar disease pathophysiology.
Abstract: The heart is the first organ to form and undergoes adaptive remodelling with age. Ventricular hypertrophy is one such adaptation, which allows the heart to cope with an increase in cardiac demand. This adaptation is necessary as part of natural growth from foetal life to adulthood. It may also occur in response to resistance in blood flow due to various insults on the heart and vessels that accumulate with age. The heart can only compensate to this increase in workload to a certain extent without losing its functional architecture, ultimately resulting in heart failure. Many genes have been implicated in cardiac hypertrophy, however none have been shown conclusively to be responsible for pathological cardiac hypertrophy. MicroRNAs offer an alternative mechanism for cellular regulation by altering gene expression. Since 1993 when the function of a non-coding DNA sequence was first discovered in the model organism Caenorhabditis elegans, many microRNAs have been implicated in having a central role in numerous physiological and pathological cellular processes. The level of control these antisense oligonucleotides offer can often be exploited to manipulate the expression of target genes. Moreover, altered levels of microRNAs can serve as diagnostic biomarkers, with the prospect of diagnosing a disease process as early as during foetal life. Therefore, it is vital to ascertain and investigate the function of microRNAs that are involved in heart development and subsequent ventricular remodelling. Here we present an overview of the complicated network of microRNAs and their target genes that have previously been implicated in cardiogenesis and hypertrophy. It is interesting to note that microRNAs in both of these growth processes can be of possible remedial value to counter a similar disease pathophysiology.

Journal ArticleDOI
TL;DR: It is argued that the linguistic expression ‘random mutation’ refers to a triadic rather than a dyadic relationship, and proposed a new, formal and precise definition based on the probabilistic concept of conditional independence, and finally provides examples of its application.
Abstract: The Modern Synthesis enshrined natural selection as the driver of adaptive evolution mainly by eliminating competing explanations. One of the eliminated competitors was Lamarckism, particularly 'mutational Lamarckism', a hypothesis according to which mutations may be directed towards producing phenotypes that improve the performance of the organism in a particular environment. Contrary to this hypothesis, the Modern Synthesis' view claims that mutations are 'random', even though the precise meaning of the term was never formally explicated. Current evidence seemingly in favour of the existence of legitimate cases of mutational Lamarckism has revitalized interest to seek a clarification of the meaning of the term 'random' in this context. Herein we analyse previous definitions of random mutations and show that they are deficient in three ways: either they are too wide, or too narrow, or dyadic. We argue that the linguistic expression 'random mutation' refers to a triadic rather than a dyadic relationship, propose a new, formal and precise definition based on the probabilistic concept of conditional independence, and finally provide examples of its application. One important consequence of our analysis is that the genomic specificity of the mutational process is not a necessary condition for the existence of mutational Lamarckism.