scispace - formally typeset
Search or ask a question

Showing papers in "Environmental Science: Processes & Impacts in 2017"


Journal ArticleDOI
TL;DR: The reaction rate constant, krxn,FFA, had a relatively small temperature dependence, no pH dependence and showed a small increase in the presence of high salt concentrations (+19% with 1 M NaCl) and is likely overestimated.
Abstract: The rate constant for the reaction between furfuryl alcohol (FFA) and singlet oxygen (1O2) in aqueous solution was measured as a function of temperature, pH and salt content employing both steady-state photolysis (β value determination) and time-resolved singlet oxygen phosphorescence methods. The latter provided more precise and reproducible data. The reaction rate constant, krxn,FFA, had a relatively small temperature dependence, no pH dependence and showed a small increase in the presence of high salt concentrations (+19% with 1 M NaCl). A critical review of the available literature suggested that the widely used value of 1.2 × 108 M−1 s−1 is likely overestimated. Therefore, we recommend the use of 1.00 × 108 M−1 s−1 for reactions performed in low ionic strength aqueous solutions (freshwater) at 22 °C. Furthermore, corrections are provided that should be applied when working at higher or lower temperatures, and/or at high salt concentrations (seawater).

144 citations


Journal ArticleDOI
TL;DR: The most sensitive parameter for the PMOC ranking was freshwater persistence, which was also the parameter that QSARs performed the most poorly at predicting, and can be part of a strategy to better identify contaminants that pose a threat to drinking water sources.
Abstract: The contaminants that have the greatest chances of appearing in drinking water are those that are mobile enough in the aquatic environment to enter drinking water sources and persistent enough to survive treatment processes. Herein a screening procedure to rank neutral, ionizable and ionic organic compounds for being persistent and mobile organic compounds (PMOCs) is presented and applied to the list of industrial substances registered under the EU REACH legislation as of December 2014. This comprised 5155 identifiable, unique organic structures. The minimum cut-off criteria considered for PMOC classification herein are a freshwater half-life >40 days, which is consistent with the REACH definition of freshwater persistency, and a log Doc 40 days, log Doc < 1.0 between pH 4–10). Only 9% of neutral substances received the highest PMOC ranking, compared to 30% of ionizable compounds and 44% of ionic compounds. Predicted hydrolysis products for all REACH parents (contributing 5043 additional structures) were found to have higher PMOC rankings than their parents, due to increased mobility but not persistence. The fewest experimental data available were for ionic compounds; therefore, their ranking is more uncertain than neutral and ionizable compounds. The most sensitive parameter for the PMOC ranking was freshwater persistency, which was also the parameter that QSARs performed the most poorly at predicting. Several prioritized drinking water contaminants in the EU and USA, and other contaminants of concern, were identified as PMOCs. This identification and ranking procedure for PMOCs can be part of a strategy to better identify contaminants that pose a threat to drinking water sources.

85 citations


Journal ArticleDOI
TL;DR: Analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch) were developed.
Abstract: Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log Kowvs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban stormwater runoff and exposed biota.

78 citations


Journal ArticleDOI
TL;DR: Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification, and will be useful for environmental impact assessment of REE enrichment in northern regions.
Abstract: Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂15N, ∂13C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g-1), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

73 citations


Journal ArticleDOI
TL;DR: The exploratory results from this study illustrate the potential of H g stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the mobility of HG in terrestrial ecosystems using Hg isotope signatures.
Abstract: Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ199Hg and Δ200Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg0) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50–70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the mobility of Hg in terrestrial ecosystems using Hg isotope signatures.

73 citations


Journal ArticleDOI
TL;DR: The development and proliferation of the personal computer in the late 20th century gave rise to a quickly increasing number of property estimation models, and continually improved computing power and connectivity among researchers via the internet are enabling the development of increasingly complex models.
Abstract: Chemical property estimation is a key component in many industrial, academic, and regulatory activities, including in the risk assessment associated with the approximately 1000 new chemical pre-manufacture notices the United States Environmental Protection Agency (US EPA) receives annually. The US EPA evaluates fate, exposure and toxicity under the 1976 Toxic Substances Control Act (amended by the 2016 Frank R. Lautenberg Chemical Safety for the 21st Century Act), which does not require test data with new chemical applications. Though the submission of data is not required, the US EPA has, over the past 40 years, occasionally received chemical-specific data with pre-manufacture notices. The US EPA has been actively using this and publicly available data to develop and refine predictive computerized models, most of which are housed in EPI Suite™, to estimate chemical properties used in the risk assessment of new chemicals. The US EPA develops and uses models based on (quantitative) structure-activity relationships ([Q]SARs) to estimate critical parameters. As in any evolving field, (Q)SARs have experienced successes, suffered failures, and responded to emerging trends. Correlations of a chemical structure with its properties or biological activity were first demonstrated in the late 19th century and today have been encapsulated in a myriad of quantitative and qualitative SARs. The development and proliferation of the personal computer in the late 20th century gave rise to a quickly increasing number of property estimation models, and continually improved computing power and connectivity among researchers via the internet are enabling the development of increasingly complex models.

67 citations


Journal ArticleDOI
TL;DR: This study measured the particle concentrations with an aerodynamic diameter smaller than 2.5 μm (PM2.5), nitrogen dioxide (NO2), and relative humidity (RH) at five metro subway stations in Suzhou's subway system with a purpose of obtaining representative data.
Abstract: This study measured the particle concentrations with an aerodynamic diameter smaller than 2.5 μm (PM2.5), nitrogen dioxide (NO2), and relative humidity (RH) at five metro subway stations in Suzhou's subway system (Lines 1 and 2). The real-time monitoring campaign was conducted from March 30th to April 10th and August 4th to August 21st, 2015. The monitoring practice was carried out during rush (7:00-9:00 AM and 17:00-19:00 PM) and regular hours (other times) at the ground and underground levels under different weather conditions with a purpose of obtaining representative data. The monitored results show that the concentrations of PM2.5 in the train carriages were lower than the concentrations at the underground platforms during both spring and summer. The mean PM2.5 concentrations at all the underground platforms in all the sub-stations monitored were significantly higher than those at the ground level. The human health impact was calculated to be 6300 annual DALYs (or 375 deaths) due to exposure to the subway system in Suzhou according to the UNEP-SETAC toxicity (USEtox) model. Linear regression models were applied to evaluate the relationships between the PM2.5, NO2 concentrations, and RH. We found that a 10% increment in RH from the current average level of 50-60% can lead to a 9.8 μg m-3 concentration decrease in PM2.5. This further results in the total human health impact being reduced to 2451 DALYs (150-4753 DALYs), representing a 20% decrease (1.2-38%).

64 citations


Journal ArticleDOI
TL;DR: A novel quantitative structure-toxicity relationship (QSTR) model was developed, using Ant Colony Optimization to select the most relevant set of molecular descriptors, and Support Vector Machine to correlate the selected descriptors with the toxicity data, and prediction results were found to be very accurate for those compounds that fall inside the defined applicability domain.
Abstract: According to the European REACH Directive, the acute toxicity towards Daphnia magna should be assessed for any industrial chemical with a market volume of more than 1 t/a. Therefore, it is highly recommended to determine the toxicity at a certain confidence level, either experimentally or by applying reliable prediction models. To this end, a large dataset was compiled, with the experimental acute toxicity values (pLC50) of 1353 compounds in Daphnia magna after 48 h of exposure. A novel quantitative structure–toxicity relationship (QSTR) model was developed, using Ant Colony Optimization (ACO) to select the most relevant set of molecular descriptors, and Support Vector Machine (SVM) to correlate the selected descriptors with the toxicity data. The proposed model showed high performance (QLOO2 = 0.695, Rfitting2 = 0.920 and Rtest2 = 0.831) with low root mean square errors of 0.498 and 0.707 for the training and test set, respectively. It was found that, in addition to hydrophobicity, polarizability and summation of solute-hydrogen bond basicity affected toxicity positively, while minimum atom-type E-state of –OH influenced toxicity values in Daphnia magna inversely. The applicability domain of the proposed model was carefully studied, considering the effect of chemical structure and prediction error in terms of leverage values and standardized residuals. In addition, a new method was proposed to define the chemical space failure for a compound with unknown toxicity to avoid using these prediction results. The resulting ACO–SVM model was successfully applied on an additional evaluation set and the prediction results were found to be very accurate for those compounds that fall inside the defined applicability domain. In fact, compounds commonly found to be difficult to predict, such as quaternary ammonium compounds or organotin compounds were outside the applicability domain, while five representative homologues of LAS (non-ionic surfactants) were, on average, well predicted within one order of magnitude.

63 citations


Journal ArticleDOI
Yao Du1, Teng Ma1, Yamin Deng1, Shuai Shen1, Zongjie Lu1 
TL;DR: High levels of ammonium from anthropogenic sources threaten the quality of surface waters and groundwaters in some areas worldwide, but elevated ammonium levels of natural sources also have been identified in the Jianghan Plain, an alluvial plain of the Yangtze River.
Abstract: High levels of ammonium from anthropogenic sources threaten the quality of surface waters and groundwaters in some areas worldwide, but elevated ammonium levels of natural sources also have been identified. High levels of ammonium have been detected in both surface water and shallow groundwater of the Jianghan Plain, an alluvial plain of the Yangtze River. This study used N isotopes coupled with ancillary chemistry to identify ammonium in this region. Ammonium in the Tongshun River (up to 10.25 mg L−1) showed a sharp accumulation in the upstream and gradual attenuation in the downstream. The δ15N values of ammonium in the TSR were high and ranged narrowly from +12.5 to +15.4‰, suggesting an anthropogenic source that was septic effluent from industrial waste discharge. Sorption and nitrification were likely to respectively serve as the principal processes contributing to ammonium attenuation in different reaches of the downstream TSR. In shallow groundwater, high levels of ammonium (up to 14.10 mg L−1) occurred in a reducing environment. The narrow δ15N variation with low values (+2.3 to +4.5‰) in the lower aquifer suggested a natural source that was organic N mineralization. The δ15N values in the shallow aquitard exhibited a wide range from −1.8 to +9.4‰, owing to various sources. Two types of water in the shallow aquitard could be identified: (1) type-1 water with relatively longer residence time was similar to those in the aquifer where ammonium was mainly sourced from organic N mineralization; (2) type-2 water with shorter residence time was jointly affected by surface input, chemical attenuation and mineralization of organic N. The aquitard prevents prompt ammonium exchange between the surface and aquifer, and the shallower part of the aquitard provides a sufficient reaction time and an active reaction rate for ammonium removal.

61 citations


Journal ArticleDOI
TL;DR: In this article, the authors collected samples from a snow pit on the Devon Ice Cap in spring 2008 and analyzed them for perfluoroalkyl acids (PFAAs), including perfluoralkyl carboxylic acid (PFCAs) and perfluoric acid (PFBA), as well as perfluorsulfonic acid (FOSA), and found that evenodd PFCA homologues were mostly between 0.5 and 2.
Abstract: To improve understanding of long-range transport of perfluoroalkyl substances to the High Arctic, samples were collected from a snow pit on the Devon Ice Cap in spring 2008. Snow was analyzed for perfluoroalkyl acids (PFAAs), including perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs), as well as perfluorooctane sulfonamide (FOSA). PFAAs were detected in all samples dated from 1993 to 2007. PFAA fluxes ranged from <1 to hundreds of ng per m2 per year. Flux ratios of even–odd PFCA homologues were mostly between 0.5 and 2, corresponding to molar ratios expected from atmospheric oxidation of fluorotelomer compounds. Concentrations of perfluorobutanoic acid (PFBA) were much higher than other PFCAs, suggesting PFBA loading on the Devon Ice Cap is influenced by additional sources, such as the oxidation of heat transfer fluids. All PFCA fluxes increased with time, while PFSA fluxes generally decreased with time. No correlations were observed between PFAAs and the marine aerosol tracer, sodium. Perfluoro-4-ethylcyclohexanesulfonate (PFECHS) was detected for the first time in an atmospherically – derived sample, and its presence may be attributed to aircraft hydraulic system leakage. Observations of PFAAs from these samples provide further evidence that atmospheric oxidation of volatile precursors is an important source of PFAAs to the Arctic environment.

59 citations


Journal ArticleDOI
TL;DR: In this paper, a correlation analysis of kinetic data for phenol or aniline oxidation by manganese oxide-compiled from multiple sources-and oxidation potentials obtained from (i) electrochemical measurements using cyclic and square wave voltammetry and (ii) theoretical calculations using density functional theory.
Abstract: Phenols and anilines have been studied extensively as reductants of environmental oxidants (such as manganese dioxide) and as reductates (e.g., model contaminants) that are transformed by environmental oxidants (ozone, triple organic matter, etc.). The thermodynamics and kinetics of these reactions have been interpreted using oxidation potentials for substituted phenols and anilines, often using a legacy experimental dataset that is of uncertain quality. Although there are many alternative oxidation potential data, there has been little systematic analysis of the relevance, reliability, and consistency of the data obtained by different methods. We have done this through an extensive correlation analysis of kinetic data for phenol or aniline oxidation by manganese oxide-compiled from multiple sources-and oxidation potentials obtained from (i) electrochemical measurements using cyclic and square wave voltammetry and (ii) theoretical calculations using density functional theory. Measured peak potentials (Ep) from different sources and experimental conditions correlate very strongly, with minimal root mean squared error (RMSE), slopes ≈ 1, and intercepts indicative of consistent absolute differences of 50-150 mV; whereas, one-electron oxidation potentials (E1) from different sources and theoretical conditions exhibit large RMSE, slopes, and intercepts vs. measured oxidation potentials. Calibration of calculated E1 data vs. measured Ep data gave corrected values of E1 with improved accuracy. For oxidation by manganese dioxide, normalization of rate constants (to the 4-chloro congener) allowed correlation of phenol and aniline data from multiple sources to give one, unified quantitative structure-activity relationship (QSAR). Comparison among these QSARs illustrates the principle of matching the observational vs. mechanistic character of the response and descriptor variables.

Journal ArticleDOI
TL;DR: A baseline toxicity QSAR was developed using liposome-water distribution ratios as descriptors and demonstrated that ionisable chemicals fall in the applicability domain, which is highly relevant for complex environmental mixtures, where these chemicals may be present at concentrations below the solubility cut-off.
Abstract: The Microtox assay, a bioluminescence inhibition assay with the marine bacterium Aliivibrio fischeri, is one of the most popular bioassays for assessing the cytotoxicity of organic chemicals, mixtures and environmental samples. Most environmental chemicals act as baseline toxicants in this short-term screening assay, which is typically run with only 30 min of exposure duration. Numerous Quantitative Structure–Activity Relationships (QSARs) exist for the Microtox assay for nonpolar and polar narcosis. However, typical water pollutants, which have highly diverse structures covering a wide range of hydrophobicity and speciation from neutral to anionic and cationic, are often outside the applicability domain of these QSARs. To include all types of environmentally relevant organic pollutants we developed a general baseline toxicity QSAR using liposome–water distribution ratios as descriptors. Previous limitations in availability of experimental liposome–water partition constants were overcome by reliable prediction models based on polyparameter linear free energy relationships for neutral chemicals and the COSMOmic model for charged chemicals. With this QSAR and targeted mixture experiments we could demonstrate that ionisable chemicals fall in the applicability domain. Most investigated water pollutants acted as baseline toxicants in this bioassay, with the few outliers identified as uncouplers or reactive toxicants. The main limitation of the Microtox assay is that chemicals with a high melting point and/or high hydrophobicity were outside of the applicability domain because of their low water solubility. We quantitatively derived a solubility cut-off but also demonstrated with mixture experiments that chemicals inactive on their own can contribute to mixture toxicity, which is highly relevant for complex environmental mixtures, where these chemicals may be present at concentrations below the solubility cut-off.

Journal ArticleDOI
TL;DR: The correlations between waste electrical and electronic equipment (WEEE) related substances and Br as a proxy for identifying poor sorting practices in different waste streams are evaluated and principal component analysis about WEEE-related compounds provides new insights into the influence of sorting practices on the extent of products' contamination.
Abstract: Brominated flame retardants (BFRs) have been used intentionally in a wide range of plastics, but are now found in an even wider range of such materials (including children's toys and food contact articles) as a result of recycling practices that mix BFR-containing waste plastics with “virgin” materials. In this study Br was quantified in toy and food contact samples on the assumption that its concentration can be used as a metric for BFR contamination. Subsequently, compound specific determination of BFRs was performed to evaluate the validity of the aforementioned assumption, crucial to render rapid, inexpensive, in situ Br determination in non-laboratory environments (such as waste handling facilities) a viable option for sorting wastes according to their BFR content. We report semi-quantitative compound specific BFR concentrations to give an overview of the distribution of individual BFRs in the analyzed samples. Finally, we evaluated the correlations between waste electrical and electronic equipment (WEEE) related substances (Ca, Sb and rare earth elements (REEs)) and Br as a proxy for identifying poor sorting practices in different waste streams. 26 samples of toys, food-contact articles and WEEE were analyzed with a suite of different techniques in order to obtain comprehensive information about their elemental and molecular composition. The information obtained from principal component analysis about WEEE-related compounds provides new insights into the influence of sorting practices on the extent of products' contamination and bringing out polymer-related trends in the pollutants' signature. 61% of all samples were Br positive: of these samples, 45% had decaBDE concentrations exceeding the concentration limits for PBDEs and their main constituent polymer was – according to the REE signature of such samples – Acrylonitrile Butadiene Styrene (ABS), uses of which include copying equipment, laptops and computers. The ability to better track chemicals of concern and their trends in products is the main requirement for high-level management and control of material cycles to become non-toxic in the future as proposed in the EU's 7th Environmental Action Plan.

Journal ArticleDOI
TL;DR: Quantitative structure-activity relationships for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed.
Abstract: Quantitative structure–activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E1), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E1 values have a mean unsigned error compared to literature values of 0.04–0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

Journal ArticleDOI
TL;DR: For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects, which shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.
Abstract: Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.

Journal ArticleDOI
TL;DR: A computer-based prediction platform for the kinetics and mechanisms of the reactions of ozone with organic compounds was developed to enable in silico predictions of transformation products and limitations of the current kO3 prediction platform were identified.
Abstract: Ozonation of secondary wastewater effluents can reduce the discharge of micropollutants by transforming their chemical structures. Therefore, a better understanding of the formation of transformation products during ozonation is important. In this study, a computer-based prediction platform for the kinetics and mechanisms of the reactions of ozone with organic compounds was developed to enable in silico predictions of transformation products. With the developed prediction platform, reaction kinetics expressed as second-order rate constants for the reactions of ozone with selected organic compounds (kO3, M−1 s−1) can be predicted based on an adapted kO3 prediction model from a previous study (Lee et al., Environ. Sci. Technol., 2015, 49, 9925–9935) (average model error of about a factor of 6 for 14 compound classes with 284 model compounds). Ozone reaction mechanisms reported in the literature have been reviewed and, using chemoinformatics tools, encoded into about 340 individual reaction rules that can be generally applied to predict the transformation products of micropollutants. Predictions for kO3 and/or transformation products were overall consistent with the experimental data for three micropollutants used as validation compounds (e.g., carbamazepine, tramadol, and triclosan). However, limitations of the current kO3 prediction platform were also identified: ambiguous assignment of the n-th highest occupied molecular orbital energy (EHOMO−n) to the reactive sites, potential errors associated with the use of a gas-phase geometry, and a poor kO3 prediction for certain compounds (cetirizine). Therefore, the current prediction tool should not be considered as a substitute for experimental studies and experimental data are still required in the future to obtain a more robust prediction model. Nonetheless, the developed prediction platform, made available as a stand-alone graphical user interface (GUI) application, will provide useful information about aqueous ozone chemistry to various groups of end-users such as environmental chemists, engineers, or toxicologists.

Journal ArticleDOI
TL;DR: The findings suggest that daily mortality attributed to PM10 might be modified by temperature, and the interaction between air pollution and global climate change has potential strategy and policy implications.
Abstract: Background: the effects of interaction between temperature and inhalable particulate matter (aerodynamic diameter < 10 μm, PM10) on mortality have been examined in some previous studies, but the results were inconsistent. This study aims to explore whether the effects of PM10 on daily non-accidental, cardiovascular and respiratory mortality were modified by temperature levels in Beijing from 2006 to 2009. Methods: we applied a bivariate response surface model and temperature-stratified model based on time-series Poisson generalized additive models (GAMs) to examine the interactive effects in single- and two-pollutant models. The modification of age and gender was examined in subgroup analyses. Results: the median of temperature (15.9 °C) and visualized turning point (20 °C) were chosen as cut-offs to define the temperature strata as two levels (low and high). Results showed that the effect estimates of PM10 were stronger at the high temperature level for non-accidental, cardiovascular and respiratory mortality than at the low temperature level. When controlling the moving average lag of temperature for 14 days, the effect estimates per 10 μg m−3 increase in PM10 for non-accidental, cardiovascular and respiratory mortality increased 0.14% (95% CI: 0.05, 0.22), 0.12% (95% CI: 0.02, 0.23) and 0.14% (95% CI: −0.06, 0.34) when the temperature was low and 0.24% (95% CI: 0.12, 0.35), 0.17% (95% CI: 0.01, 0.34) and 0.45% (95% CI: 0.13, 0.78) at the high temperature level, respectively. In the two-pollutant model, the effects of PM10 were attenuated at both high and low temperatures at all lags after adjusting SO2 and NO2. The PM10 effects were stronger at the high temperature level for females and elderly people (≥65 years old). Conclusion: the findings suggest that daily mortality attributed to PM10 might be modified by temperature. The interaction between air pollution and global climate change has potential strategy and policy implications.

Journal ArticleDOI
TL;DR: In this paper, the authors used density functional theory (DFT) and high-level wave function-based methods (including computationally intensive coupled cluster methods) to explore the activation energies of SO4−−-driven oxidation reactions on a series of benzene-derived contaminants.
Abstract: Advanced oxidation processes that utilize highly oxidative radicals are widely used in water reuse treatment. In recent years, the application of sulfate radical (SO4˙−) as a promising oxidant for water treatment has gained increasing attention. To understand the efficiency of SO4˙− in the degradation of organic contaminants in wastewater effluent, it is important to be able to predict the reaction kinetics of various SO4˙−-driven oxidation reactions. In this study, we utilize density functional theory (DFT) and high-level wavefunction-based methods (including computationally-intensive coupled cluster methods), to explore the activation energies of SO4˙−-driven oxidation reactions on a series of benzene-derived contaminants. These high-level calculations encompass a wide set of reactions including 110 forward/reverse reactions and 5 different computational methods in total. Based on the high-level coupled-cluster quantum calculations, we find that the popular M06-2X DFT functional is significantly more accurate for OH− additions than for SO4˙− reactions. Most importantly, we highlight some of the limitations and deficiencies of other computational methods, and we recommend the use of high-level quantum calculations to spot-check environmental chemistry reactions that may lie outside the training set of the M06-2X functional, particularly for water oxidation reactions that involve SO4˙− and other inorganic species.

Journal ArticleDOI
TL;DR: New insights are provided about how hydrologic events may affect the reactivity of U present in mine waste solids exposed to surface oxidizing conditions, and the influence of organic-rich sediments on U accumulation in the Rio Paguate.
Abstract: The mobility and accumulation of uranium (U) along the Rio Paguate, adjacent to the Jackpile Mine, in Laguna Pueblo, New Mexico was investigated using aqueous chemistry, electron microprobe, X-ray diffraction and spectroscopy analyses. Given that it is not common to identify elevated concentrations of U in surface water sources, the Rio Paguate is a unique site that concerns the Laguna Pueblo community. This study aims to better understand the solid chemistry of abandoned mine waste sediments from the Jackpile Mine and identify key hydrogeological and geochemical processes that affect the fate of U along the Rio Paguate. Solid analyses using X-ray fluorescence determined that sediments located in the Jackpile Mine contain ranges of 320 to 9200 mg kg−1 U. The presence of coffinite, a U(IV)-bearing mineral, was identified by X-ray diffraction analyses in abandoned mine waste solids exposed to several decades of weathering and oxidation. The dissolution of these U-bearing minerals from abandoned mine wastes could contribute to U mobility during rain events. The U concentration in surface waters sampled closest to mine wastes are highest during the southwestern monsoon season. Samples collected from September 2014 to August 2016 showed higher U concentrations in surface water adjacent to the Jackpile Mine (35.3 to 772 μg L−1) compared with those at a wetland 4.5 kilometers downstream of the mine (5.77 to 110 μg L−1). Sediments co-located in the stream bed and bank along the reach between the mine and wetland had low U concentrations (range 1–5 mg kg−1) compared to concentrations in wetland sediments with higher organic matter (14–15%) and U concentrations (2–21 mg kg−1). Approximately 10% of the total U in wetland sediments was amenable to complexation with 1 mM sodium bicarbonate in batch experiments; a decrease of U concentration in solution was observed over time in these experiments likely due to re-association with sediments in the reactor. The findings from this study provide new insights about how hydrologic events may affect the reactivity of U present in mine waste solids exposed to surface oxidizing conditions, and the influence of organic-rich sediments on U accumulation in the Rio Paguate.

Journal ArticleDOI
TL;DR: The results suggested that biomass could be used to synthesize a novel sorbent and catalyst for treating redox-sensitive contaminants in natural and engineered systems.
Abstract: A novel biochar-coated zero-valent iron [Fe(0)], which was synthesized with rice straw and Fe(0), was applied to remove nitro explosives (2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine) and halogenated phenols (2,4-dibromophenol and 2,4-difluorophenol) from contaminated waters. Due to the presence of biochar on the outside, the removal of nitro explosives and halogenated phenols was significantly enhanced via sorption. The sorbed contaminants were further transformed into reductive products, indicating that the inner Fe(0) played the role of a reductant in the biochar-coated Fe(0). Compared to direct reduction with Fe(0), the reductive transformation with biochar-coated Fe(0) was markedly enhanced, suggesting that the biochar in biochar-coated Fe(0) may act as an electron transfer mediator. Further experiments showed that the surface functional groups of biochar were involved in the catalytic enhancement of electron transfer. Our results suggested that biomass could be used to synthesize a novel sorbent and catalyst for treating redox-sensitive contaminants in natural and engineered systems.

Journal ArticleDOI
TL;DR: The Eawag-Soil package is presented, a public database that has been developed to contain all freely accessible regulatory data on pesticide degradation in laboratory soil simulation studies for pesticides registered in the EU (282 degradation pathways, 1535 reactions, 1619 compounds and 4716 biotransformation half-life values with corresponding metadata on study conditions).
Abstract: Developing models for the prediction of microbial biotransformation pathways and half-lives of trace organic contaminants in different environments requires as training data easily accessible and sufficiently large collections of respective biotransformation data that are annotated with metadata on study conditions. Here, we present the Eawag-Soil package, a public database that has been developed to contain all freely accessible regulatory data on pesticide degradation in laboratory soil simulation studies for pesticides registered in the EU (282 degradation pathways, 1535 reactions, 1619 compounds and 4716 biotransformation half-life values with corresponding metadata on study conditions). We provide a thorough description of this novel data resource, and discuss important features of the pesticide soil degradation data that are relevant for model development. Most notably, the variability of half-life values for individual compounds is large and only about one order of magnitude lower than the entire range of median half-life values spanned by all compounds, demonstrating the need to consider study conditions in the development of more accurate models for biotransformation prediction. We further show how the data can be used to find missing rules relevant for predicting soil biotransformation pathways. From this analysis, eight examples of reaction types were presented that should trigger the formulation of new biotransformation rules, e.g., Ar-OH methylation, or the extension of existing rules, e.g., hydroxylation in aliphatic rings. The data were also used to exemplarily explore the dependence of half-lives of different amide pesticides on chemical class and experimental parameters. This analysis highlighted the value of considering initial transformation reactions for the development of meaningful quantitative-structure biotransformation relationships (QSBR), which is a novel opportunity offered by the simultaneous encoding of transformation reactions and corresponding half-lives in Eawag-Soil. Overall, Eawag-Soil provides an unprecedentedly rich collection of manually extracted and curated biotransformation data, which should be useful in a great variety of applications.

Journal ArticleDOI
TL;DR: A QSAR model with a larger and wider applicability domain as compared with existing models was developed and shows satisfactory performance and contained chemicals that have rarely been covered in most previous studies.
Abstract: Reaction with hydroxyl radicals (˙OH) is an important removal pathway for organic pollutants in the aquatic environment. The aqueous reaction rate constant (kOH) is therefore an important parameter for fate assessment of aquatic pollutants. Since experimental determination fails to meet the requirement of being able to efficiently handle numerous organic chemicals at limited cost and within a relatively short period of time, in silico methods such as quantitative structure-activity relationship (QSAR) models are needed to predict kOH. In this study, a QSAR model with a larger and wider applicability domain as compared with existing models was developed. Following the guidelines for the development and validation of QSAR models proposed by the Organization for Economic Co-operation and Development (OECD), the model shows satisfactory performance. The applicability domain of the model has been extended and contained chemicals that have rarely been covered in most previous studies. The chemicals covered in the current model contain functional groups including [double bond splayed left]C[double bond, length as m-dash]C[double bond splayed right], -C[triple bond, length as m-dash]C-, -C6H5, -OH, -CHO, -O-, [double bond splayed left]C[double bond, length as m-dash]O, -C[double bond, length as m-dash]O(O)-, -COOH, -C[triple bond, length as m-dash]N, [double bond splayed left]N-, -NH2, -NH-C(O)-, -NO2, -N[double bond, length as m-dash]C-N[double bond splayed right], [double bond splayed left]N-N[double bond splayed right], -N[double bond, length as m-dash]N-, -S-, -S-S-, -SH, -SO3, -SO4, -PO4, and -X (F, Cl, Br, and I).

Journal ArticleDOI
TL;DR: The results showed that the superposition of materials led to a slowing down of the VOC emission process from polyurethane adhesive mastic, which explains the concentration decays recorded in houses during the construction process.
Abstract: Building and furniture materials are known to be major sources of volatile organic compounds (VOCs) indoors. During the construction process, an introduced material can have a more or less long-term impact on the indoor air quality according to the building characteristics. In this study, field measurements were carried out at six construction stages in three energy-efficient timber-frame houses. Data analysis focused on the ten most abundant compounds found among an initial list of fifteen target VOCs, namely formaldehyde, acetaldehyde, hexanal, toluene, m/p-xylenes, ethylbenzene, styrene, α-pinene, 3-carene and D-limonene. The chemical compositions and concentration variation patterns were recorded. The results showed a high pollution count, with m/p-xylenes and ethylbenzene concentrations ranging from 1900 to 5100 μg m−3 occurring at the time of the structural work (representing more than 88% of the sum of the target VOCs). Emission tests done on a large number of materials used in the construction revealed that this pollution is due to the emissions from the polyurethane adhesive mastic used as a sealing material. The emission kinetics of polyurethane adhesive mastic was assessed alone and also within a material assembly reconstituting a room wall. The results showed that the superposition of materials led to a slowing down of the VOC emission process from polyurethane adhesive mastic, which explains the concentration decays recorded in houses during the construction process. At the final construction stage, the concentration levels were low for all compounds (the sums of the target VOCs were between 18 and 32 μg m−3), with the aldehydes (formaldehyde, acetaldehyde and hexanal) now becoming the major fraction in the chemical composition in the last stages of construction (representing 50–70% of the sum of the target VOCs). This is in agreement with the fact that the sources of aldehydes are the most numerous among the materials and have rather slow emission kinetics.

Journal ArticleDOI
TL;DR: Developments in environmental toxicology including Adverse Outcome Pathways (AOPs) and omics responses should be utilised to develop better, more mechanistically relevant, (Q)SAR models.
Abstract: The current state of the art of (Quantitative) Structure-Activity Relationships ((Q)SARs) to predict environmental toxicity is assessed along with recommendations to develop these models further. The acute toxicity of compounds acting by the non-polar narcotic mechanism of action can be well predicted, however other approaches, including read-across, may be required for compounds acting by specific mechanisms of action. The chronic toxicity of compounds to environmental species is more difficult to predict from (Q)SARs, with robust data sets and more mechanistic information required. In addition, the toxicity of mixtures is little addressed by (Q)SAR approaches. Developments in environmental toxicology including Adverse Outcome Pathways (AOPs) and omics responses should be utilised to develop better, more mechanistically relevant, (Q)SAR models.

Journal ArticleDOI
TL;DR: This work elucidates how probe selection and solution conditions influence the apparent photoreactivity of environmental waters and confirms that 3DOM or 1O2 probes cannot be used interchangeably in waters that vary in [DOC], pH, or DOM source.
Abstract: Excited triplet states of dissolved organic matter (3DOM) are quantified directly with the species-specific probes trans,trans-hexadienoic acid (HDA) and 2,4,6-trimethylphenol (TMP), and indirectly with the singlet oxygen (1O2) probe furfuryl alcohol (FFA). Although previous work suggests that these probe compounds may be sensitive to solution conditions, including dissolved organic carbon concentration ([DOC]) and pH, and may quantify different 3DOM subpopulations, the probes have not been systematically compared. Therefore, we quantify the apparent photoreactivity of diverse environmental waters using HDA, TMP, and FFA. By conducting experiments under ambient [DOC] and pH, with standardized [DOC] and pH, and with solid phase extraction isolates, we demonstrate that much of the apparent dissimilarity in photochemical measurements is attributable to solution conditions, rather than intrinsic differences in 3DOM production. In general, apparent quantum yields (Φ1O2 ≥ Φ3DOM,TMP ≫ Φ3DOM,HDA) and pseudo-steady state concentrations ([1O2]ss > [3DOM]ss,TMP > [3DOM]ss,HDA) show consistent relationships in all waters under standardized conditions. However, intrinsic differences in 3DOM photoreactivity are apparent between DOM from diverse sources, as seen in the higher Φ1O2 and lower Φ3DOM,TMP of wastewater effluents compared with oligotrophic lakes. Additionally, while conflicting trends in photoreactivity are observed under ambient conditions, all probes observe quantum yields increasing from surface wetlands to terrestrially influenced waters to oligotrophic lakes under standardized conditions. This work elucidates how probe selection and solution conditions influence the apparent photoreactivity of environmental waters and confirms that 3DOM or 1O2 probes cannot be used interchangeably in waters that vary in [DOC], pH, or DOM source.

Journal ArticleDOI
TL;DR: The results indicate that many suitable QSPRs exist, but some critical knowledge gaps remain and future focus should be directed towards the development of QSPR models for biodegradation in wastewater and sediment systems, direct photolysis and reaction with singlet oxygen, as well as additional reactive intermediates.
Abstract: Many organic chemicals are ionizable by nature. After use and release into the environment, various fate processes determine their concentrations, and hence exposure to aquatic organisms. In the absence of suitable data, such fate processes can be estimated using Quantitative Structure–Property Relationships (QSPRs). In this review we compiled available QSPRs from the open literature and assessed their applicability towards ionizable organic chemicals. Using quantitative and qualitative criteria we selected the ‘best’ QSPRs for sorption, (a)biotic degradation, and bioconcentration. The results indicate that many suitable QSPRs exist, but some critical knowledge gaps remain. Specifically, future focus should be directed towards the development of QSPR models for biodegradation in wastewater and sediment systems, direct photolysis and reaction with singlet oxygen, as well as additional reactive intermediates. Adequate QSPRs for bioconcentration in fish exist, but more accurate assessments can be achieved using pharmacologically based toxicokinetic (PBTK) models. No adequate QSPRs exist for bioconcentration in non-fish species. Due to the high variability of chemical and biological species as well as environmental conditions in QSPR datasets, accurate predictions for specific systems and inter-dataset conversions are problematic, for which standardization is needed. For all QSPR endpoints, additional data requirements involve supplementing the current chemical space covered and accurately characterizing the test systems used.

Journal ArticleDOI
TL;DR: This review identifies alpine glaciers co-located with regions characterized by OCPs use as a significant organochlorine pollutant distribution source, secondary in timing and location to direct deposition, with subsequent bioaccumulation and potential human risk impacts.
Abstract: Northern Hemisphere alpine glaciers have been identified as a point of concentration and reemergence of legacy organochlorine pollutants (OCPs). In this review, we compile a selection of published literature combining long-range, global atmospheric transport and distribution-based compartmental environmental flux models, as well as data from glacial meltwater, ice core, crevasse and proglacial lake sediment studies. Regional studies of ice and meltwater in alpine glaciers of the northern latitudes show similarities in sample deposition profiles and concentration due to chemical atmospheric residence time, precipitation type and glacier flow rates. In glaciated locations near areas of extensive OCPs use, such as the Swiss and Italian Alps, glacier sample concentrations are higher, while in areas more distant from use, including Arctic nations, OCPs concentrations in glaciers are significantly lower. Our review identifies alpine glaciers co-located with regions characterized by OCPs use as a significant organochlorine pollutant distribution source, secondary in timing and location to direct deposition, with subsequent bioaccumulation and potential human risk impacts.

Journal ArticleDOI
TL;DR: This review summarizes the general methodologies for collecting and analyzing raw QCM data, as well as for evaluating the associated uncertainties, to help researchers gain deeper insights into the fundamentals and applications of QCMs, and provides new perspectives on future research directions.
Abstract: Quartz crystal microbalances (QCMs) provide a new analytical opportunity and prospect to characterize many environmental processes at solid/liquid interfaces, thanks to their almost real-time measurement of physicochemical changes on their quartz sensor. This work reviews the applications of QCMs in probing the interactions of organic molecules, nanomaterials (NMs) and microbes with solid surfaces. These interfacial interactions are relevant to critical environmental processes such as biofilm formation, fate and transport of NMs, fouling in engineering systems and antifouling practices. The high sensitivity, real-time monitoring, and simultaneous frequency and dissipation measurements make QCM-D a unique technique that helps reveal the interaction mechanisms for the abovementioned processes (e.g., driving forces, affinity, kinetics, and the interplay between surface chemistry and solution chemistry). On the other hand, QCM measurement is nonselective and spatially-dependent. Thus, caution should be taken during data analysis and interpretation, and it is necessary to cross-validate the results using complementary information from other techniques for more quantitative and accurate interpretation. This review summarizes the general methodologies for collecting and analyzing raw QCM data, as well as for evaluating the associated uncertainties. It serves to help researchers gain deeper insights into the fundamentals and applications of QCMs, and provides new perspectives on future research directions.

Journal ArticleDOI
TL;DR: The remediation mechanisms of natural sepiolite for the Cd pollutant in paddy soil could be summarized as the collective effects of soil chemistry and plant physiology.
Abstract: Remediation of heavy metal polluted agricultural soil is essential for human health and ecological safety and remediation mechanisms at the microscopic level are vital for their large-scale utilization. In this study, natural sepiolite was employed as an immobilization agent for in situ field-scale remediation of Cd-contaminated paddy soil and the remediation mechanisms were investigated in terms of soil chemistry and plant physiology. Natural sepiolite had a significant immobilization effect for bioavailable Cd contents in paddy soil, and consequently could lower the Cd concentrations of brown rice, husk, straw, and roots of rice plants by 54.7-73.7%, 44.0-62.5%, 26.5-67.2%, and 36.7-46.7%, respectively. Regarding soil chemistry, natural sepiolite increased the soil pH values and shifted the zeta potentials of soil particles to be more negative, enhancing the fixation or sorption of Cd on soil particles, and resulted in the reduction of HCl and DTPA extractable Cd concentrations in paddy soil. Natural sepiolite neither enhanced nor inhibited iron plaques on the rice root surface, but did change the chemical environments of Fe and S in rice root. Natural sepiolite improved the activities of antioxidant enzymes and enhanced the total antioxidant capacity to alleviate the stress of Cd. It also promotes the synthesis of GSH and NPT to complete the detoxification. In general, the remediation mechanisms of natural sepiolite for the Cd pollutant in paddy soil could be summarized as the collective effects of soil chemistry and plant physiology.

Journal ArticleDOI
TL;DR: In health risk assessment DbA was found to be the most carcinogenic and mutagenic as compared to other PAHs followed by BaP, while 1-NPyr had a larger contribution to BaP-TEQ than 3-NFla.
Abstract: Aerosol samples in the dual-phase (gaseous and particulate) were collected simultaneously for the first time in Agra at a rural and a traffic dominated site during post-monsoon and winter seasons to investigate the gas–particle partitioning of polycyclic aromatic hydrocarbons (PAHs). The samples were collected using a high volume sampler on quartz micro-fiber filter papers and polyurethane foam plugs for particulate and gas phases respectively. The samples were extracted in a mixture of DCM and n-hexane. 16 priority PAHs and two nitro-PAHs were analyzed using gas chromatograph-mass spectrometry. The total concentration of PAHs (gas + particulate) was 4015 and 624 ng m−3 at the traffic and rural sites respectively. Two and three ring PAHs were dominant in the gas phase while four, five and six ring PAHs were abundant in the particle phase. A statistically significant correlation (r2 = 0.69–0.98, p < 0.001) for log Kpvs. was obtained for individual PAHs at both sites where slopes varied between −2.83 and −0.04 at the traffic site and from −3.15 to −0.06 at the rural site. Regression statistics of Clausius–Clapeyron plots suggest that the concentration of highly volatile PAHs in the atmosphere is influenced by temperature. The gas–particle partitioning coefficient Kp in its logarithmic form correlated with 1/T (r2 = 0.5–0.95, p < 0.001) and a positive slope for individual PAHs was found. In health risk assessment DbA was found to be the most carcinogenic and mutagenic as compared to other PAHs followed by BaP. 1-NPyr had a larger contribution to BaP-TEQ than 3-NFla.