scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers of Physics in China in 2022"



Journal ArticleDOI
TL;DR: In this article , the authors proposed a method to generate electromagnetically induced moiré optical lattices in a three-level coherent atomic gas working under electromagnetic induced transparency.
Abstract: Electromagnetically induced optical (or photonic) lattices via atomic coherence in atomic ensembles have recently received great theoretical and experimental interest. We here conceive a way to generate electromagnetically induced moiré optical lattices — a twisted periodic pattern when two identical periodic patterns (lattices) are overlapped in a twisted angle (θ) — in a three-level coherent atomic gas working under electromagnetically induced transparency. We show that, changing the twisted angle and relative strength between the two constitutive sublattices, the moiré Bloch bands that are extremely flattened can always appear, resembling the typical flat-band and moiré physics found in other contexts. Dynamics of light propagation in the induced periodic structures demonstrating the unique linear localization and delocalization properties are also revealed. Our scheme can be implemented in a Rubidium atomic medium, where the predicted moiré optical lattices and flattened bands are naturally observable.

12 citations



Journal ArticleDOI
TL;DR: In this paper , the authors proposed a method to generate electromagnetically induced moiré optical lattices in a three-level coherent atomic gas working under electromagnetic induced transparency.
Abstract: Electromagnetically induced optical (or photonic) lattices via atomic coherence in atomic ensembles have recently received great theoretical and experimental interest. We here conceive a way to generate electromagnetically induced moiré optical lattices — a twisted periodic pattern when two identical periodic patterns (lattices) are overlapped in a twisted angle (θ) — in a three-level coherent atomic gas working under electromagnetically induced transparency. We show that, changing the twisted angle and relative strength between the two constitutive sublattices, the moiré Bloch bands that are extremely flattened can always appear, resembling the typical flat-band and moiré physics found in other contexts. Dynamics of light propagation in the induced periodic structures demonstrating the unique linear localization and delocalization properties are also revealed. Our scheme can be implemented in a Rubidium atomic medium, where the predicted moiré optical lattices and flattened bands are naturally observable.

11 citations


Journal ArticleDOI
TL;DR: In this paper , the authors investigate the single-photon scattering in a one-dimensional waveguide on a two-level or three-level giant atom and demonstrate the energy shift which is dependent on the atomic size.
Abstract: The nonlocal emitter-waveguide coupling, which gives birth to the so called giant atom, represents a new paradigm in the field of quantum optics and waveguide QED. We investigate the single-photon scattering in a one-dimensional waveguide on a two-level or three-level giant atom. Thanks to the natural interference induced by the back and forth photon transmitted/reflected between the atom-waveguide coupling points, the photon transmission can be dynamically controlled by the periodic phase modulation via adjusting the size of the giant atom. For the two-level giant-atom setup, we demonstrate the energy shift which is dependent on the atomic size. For the driven three-level giant-atom setup, it is of great interest that, the Autler-Townes splitting is dramatically modulated by the giant atom, in which the width of the transmission valleys (reflection range) is tunable in terms of the atomic size. Our investigation will be beneficial to the photon or phonon control in quantum network based on mesoscopical or even macroscopical quantum nodes involving the giant atom.

10 citations


Journal ArticleDOI
TL;DR: In this paper , the entanglement entropy in the original SYK model was studied using three different approaches: the exact diagonalization, the eigenstate thermalization hypothesis, and the path-integral representation.
Abstract: Entanglement is one of the most important concepts in quantum physics. We review recent progress in understanding the quantum entanglement in many-body systems using large-N solvable models: the Sachdev—Ye—Kitaev (SYK) model and its generalizations. We present the study of entanglement entropy in the original SYK model using three different approaches: the exact diagonalization, the eigenstate thermalization hypothesis, and the path-integral representation. For coupled SYK models, the entanglement entropy shows linear growth and saturation at the thermal value. The saturation is related to replica wormholes in gravity. Finally, we consider the steady-state entanglement entropy of quantum many-body systems under repeated measurements. The traditional symmetry breaking in the enlarged replica space leads to the measurement-induced entanglement phase transition.

10 citations


Journal ArticleDOI
TL;DR: In this paper , the authors proposed an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target qubit based on circuit quantum electrodynamics (QED).
Abstract: We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a superconducting qubit. This scheme is simple because the gate implementation requires only one step of operation. In addition, this scheme is quite general because the two logic states of each photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state ∣φ〉 (e.g., a Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: because only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher energy levels of the coupler is avoided; the gate operation time does not depend on the number of qubits; and the gate is implemented deterministically because no measurement is applied. As an example, we numerically analyze the circuit-QED based experimental feasibility of implementing a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state. The scheme can be applied to accomplish the same task in a wide range of physical system, which consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural or artificial atom.

9 citations






Journal ArticleDOI
TL;DR: In this article , the Doppler-free saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride (BaF) molecules in a 4~K cryogenic cell was investigated.
Abstract: We report an experimental investigation on the Doppler-free saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride (BaF) molecules in a 4~K cryogenic cell. The obtained spectra with a resolution of 19~MHz, much smaller than previously observed in absorption spectroscopy, clearly resolve the hyperfine transitions. Moreover, we use these high-resolution spectra to fit the hyperfine splittings of excited $A(v=0)$ state and find the hyperfine splitting of the laser-cooling-relevant $A^2\Pi_{1/2}(v=0, J=1/2, +)$ state is about 18 MHz, much higher than the previous theoretically predicted value. This provides important missing information for laser cooling of BaF molecules.


Journal ArticleDOI
TL;DR: In this article , the authors present a comprehensive tutorial on analytical and numerical methods of laser self-injection locking, as well as a review of most recent theoretical and experimental achievements.
Abstract: The stabilization and manipulation of laser frequency by means of an external cavity are nearly ubiquitously used in fundamental research and laser applications. While most of the laser light transmits through the cavity, in the presence of some back-scattered light from the cavity to the laser, the self-injection locking effect can take place, which locks the laser emission frequency to the cavity mode of similar frequency. The self-injection locking leads to dramatic reduction of laser linewidth and noise. Using this approach, a common semiconductor laser locked to an ultrahigh-$Q$ microresonator can obtain sub-hertz linewidth, on par with state-of-the-art fiber lasers. Therefore it paves the way to manufacture high-performance semiconductor lasers with reduced footprint and cost. Moreover, with high laser power, the optical nonlinearity of the microresonator drastically changes the laser dynamics, offering routes for simultaneous pulse and frequency comb generation in the same microresonator. Particularly, integrated photonics technology, enabling components fabricated via semiconductor CMOS process, has brought increasing and extending interest to laser manufacturing using this method. In this article, we present a comprehensive tutorial on analytical and numerical methods of laser self-injection locking, as well a review of most recent theoretical and experimental achievements.





Journal ArticleDOI
TL;DR: In this paper , the boundary modes of Dirac semimetals of band inversion type were investigated from an effective model perspective, and it was shown that the time-reversal symmetry breaking can gap out the surface bands and expose the hinge modes in the spectrum, which could be beneficial for the experimental detection of hinge modes.
Abstract: Dirac semimetals (DSMs) are an important class of topological states of matter. Here, focusing on DSMs of band inversion type, we investigate their boundary modes from the effective model perspective. We show that in order to properly capture the boundary modes, $k$-cubic terms must be included in the effective model, which would drive an evolution of surface degeneracy manifold from a nodal line to a nodal point. Using first-principles calculations, we demonstrate that this feature and the topological hinge modes can be clearly exhibited in $\beta$-CuI. We further extend the discussion to magnetic DSMs and show that the time-reversal symmetry breaking can gap out the surface bands and hence help to expose the hinge modes in the spectrum, which could be beneficial for the experimental detection of hinge modes.



Journal ArticleDOI
TL;DR: In this paper , the spontaneous emission dynamics of a two-level giant atom with dynamically modulated transition frequency was studied and it was shown that the retarded feedback effect of the giant-atom system is greatly modified by a dynamical phase arising from the frequency modulation and the retardation effect itself.
Abstract: Giant atoms are known for the frequency-dependent spontaneous emission and associated interference effects. In this paper, we study the spontaneous emission dynamics of a two-level giant atom with dynamically modulated transition frequency. It is shown that the retarded feedback effect of the giant-atom system is greatly modified by a dynamical phase arising from the frequency modulation and the retardation effect itself. Interestingly, such a modification can in turn suppress the retarded feedback such that the giant atom behaves like a small one. By introducing an additional phase difference between the two atom-waveguide coupling paths, we also demonstrate the possibility of realizing chiral and tunable temporal profiles of the output fields. The results in this paper have potential applications in quantum information processing and quantum network engineering.

Journal ArticleDOI
TL;DR: In this article , the authors investigate a number of models proposed in literature in light of the DAMPE findings and find that the re-acceleration of cosmic rays, during their propagation, by random magnetohydrodynamic waves may not reproduce sufficient hardenings of B/C and B/O, and an additional spectral break of the diffusion coefficient is required.
Abstract: Precise measurements of the boron-to-carbon and boron-to-oxygen ratios by DAMPE show clear hardenings around $100$ GeV/n, which provide important implications on the production, propagation, and interaction of Galactic cosmic rays. In this work we investigate a number of models proposed in literature in light of the DAMPE findings. These models can roughly be classified into two classes, driven by propagation effects or by source ones. Among these models discussed, we find that the re-acceleration of cosmic rays, during their propagation, by random magnetohydrodynamic waves may not reproduce sufficient hardenings of B/C and B/O, and an additional spectral break of the diffusion coefficient is required. The other models can properly explain the hardenings of the ratios. However, depending on simplifications assumed, the models differ in their quality in reproducing the data in a wide energy range. The models with significant re-acceleration effect will under-predict low-energy antiprotons but over-predict low-energy positrons, and the models with secondary production at sources over-predict high-energy antiprotons. For all models high-energy positron excess exists.

Journal ArticleDOI
TL;DR: In this article , the authors theoretically investigate the Higgs oscillation in a one-dimensional Raman-type spin-orbit-coupled Fermi superfluid with the time-dependent Bogoliubov-de Gennes equations.
Abstract: We theoretically investigate the Higgs oscillation in a one-dimensional Raman-type spin-orbit-coupled Fermi superfluid with the time-dependent Bogoliubov-de Gennes equations. By linearly ramping or abruptly changing the effective Zeeman field in both the Bardeen-Cooper-Schrieffer state and the topological superfluid state, we find the amplitude of the order parameter exhibits an oscillating behaviour over time with two different frequencies (i.e., two Higgs oscillations) in contrast to the single one in a conventional Fermi superfluid. The observed period of oscillations has a great agreement with the one calculated using the previous prediction [Volkov and Kogan, J. Exp. Theor. Phys. 38, 1018 (1974)], where the oscillating periods are now determined by the minimums of two quasi-particle spectrum in this system. We further verify the existence of two Higgs oscillations using a periodic ramp strategy with theoretically calculated driving frequency. Our predictions would be useful for further theoretical and experimental studies of these Higgs oscillations in spin-orbit-coupled systems.




Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors proposed a shortcut to adiabaticity technique to realize high-fidelity fast quantum state transfer (QST) and entangled state generation (ESG) in a cavity-coupled many qubits system via its dark pathways.
Abstract: Quantum state transfer (QST) and entangled state generation (ESG) are important building blocks for modern quantum information processing. To achieve these tasks, convention wisdom is to consult the quantum adiabatic evolution, which is time-consuming, and thus is of low fidelity. Here, using the shortcut to adiabaticity technique, we propose a general method to realize high-fidelity fast QST and ESG in a cavity-coupled many qubits system via its dark pathways, which can be further designed for high-fidelity quantum tasks with different optimization purpose. Specifically, with a proper dark pathway, QST and ESG between any two qubits can be achieved without decoupling the others, which simplifies experimental demonstrations. Meanwhile, ESG among all qubits can also be realized in a single step. In addition, our scheme can be implemented in many quantum systems, and we illustrate its implementation on superconducting quantum circuits. Therefore, we propose a powerful strategy for selective quantum manipulation, which is promising in cavity coupled quantum systems and could find many convenient applications in quantum information processing.

Journal ArticleDOI
TL;DR: In this paper , the learning power of a one-dimensional long-range randomly-coupled quantum spin chain, within the framework of reservoir computing, has been studied, and it has been shown that the system in the many-body localized (MBL) phase holds long-term memory, which can be attributed to the emergent local integrals of motion.
Abstract: Harnessing the quantum computation power of the present noisy-intermediate-size-quantum devices has received tremendous interest in the last few years. Here we study the learning power of a one-dimensional long-range randomly-coupled quantum spin chain, within the framework of reservoir computing. In time sequence learning tasks, we find the system in the quantum many-body localized (MBL) phase holds long-term memory, which can be attributed to the emergent local integrals of motion. On the other hand, MBL phase does not provide sufficient nonlinearity in learning highly-nonlinear time sequences, which we show in a parity check task. This is reversed in the quantum ergodic phase, which provides sufficient nonlinearity but compromises memory capacity. In a complex learning task of Mackey—Glass prediction that requires both sufficient memory capacity and nonlinearity, we find optimal learning performance near the MBL-to-ergodic transition. This leads to a guiding principle of quantum reservoir engineering at the edge of quantum ergodicity reaching optimal learning power for generic complex reservoir learning tasks. Our theoretical finding can be tested with near-term NISQ quantum devices.

Journal ArticleDOI
TL;DR: The twisted few layer graphite (tFL-graphite) as mentioned in this paper is a new family of MHSs which has richer and highly tunable moir\'{e} flat band structures entirely distinct from all the known mHSs.
Abstract: We report that the twisted few layer graphite (tFL-graphite) is a new family of moir\'{e} heterostructures (MHSs), which has richer and highly tunable moir\'{e} flat band structures entirely distinct from all the known MHSs. A tFL-graphite is composed of two few-layer graphite (Bernal stacked multilayer graphene), which are stacked on each other with a small twisted angle. The moir\'{e} band structure of the tFL-graphite strongly depends on the layer number of its composed two van der Waals layers. Near the magic angle, a tFL-graphite always has two nearly flat bands coexisting with a few pairs of narrowed dispersive (parabolic or linear) bands at the Fermi level, thus, enhances the DOS at $E_F$. This coexistence property may also enhance the possible superconductivity as been demonstrated in other multiband superconductivity systems. Therefore, we expect strong multiband correlation effects in tFL-graphite. Meanwhile, a proper perpendicular electric field can induce several isolated nearly flat bands with nonzero valley Chern number in some simple tFL-graphites, indicating that tFL-graphite is also a novel topological flat band system.