scispace - formally typeset
Search or ask a question

Showing papers in "Global Ecology and Biogeography in 2008"


Journal ArticleDOI
TL;DR: The area under the receiver operating characteristic (ROC) curve, known as the AUC, is currently considered to be the standard method to assess the accuracy of predictive distribution models as discussed by the authors.
Abstract: The area under the receiver operating characteristic (ROC) curve, known as the AUC, is currently considered to be the standard method to assess the accuracy of predictive distribution models. It avoids the supposed subjectivity in the threshold selection process, when continuous probability derived scores are converted to a binary presence‐absence variable, by summarizing overall model performance over all possible thresholds. In this manuscript we review some of the features of this measure and bring into question its reliability as a comparative measure of accuracy between model results. We do not recommend using AUC for five reasons: (1) it ignores the predicted probability values and the goodness-of-fit of the model; (2) it summarises the test performance over regions of the ROC space in which one would rarely operate; (3) it weights omission and commission errors equally; (4) it does not give information about the spatial distribution of model errors; and, most importantly, (5) the total extent to which models are carried out highly influences the rate of well-predicted absences and the AUC scores.

2,711 citations


Journal ArticleDOI
TL;DR: A fire model, running inside the modular framework of the Lund-Potsdam-Jena Dynamic Global Vegetation Model, yielded fire return intervals in good agreement with observations for many regions (except parts of semiarid Africa and boreal Siberia), and it is suggested that further improvement for these regions must involve additional process descriptions such as permafrost and fuel/fire dynamics.
Abstract: Disturbances from fire, wind-throw, insects and other herbivores are, besides climate, CO 2 , and soils, critical factors for composition, structure and dynamics of most vegetation. To simulate the influence of fire on the dynamic equilibrium, as well as on potential change, of vegetation at the global scale, we have developed a fire model, running inside the modular framework of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). 2 Estimated litter moisture is the main driver of day-to-day fire probability. The length of the fire season is used to estimate the fractional area of a grid cell which is burnt in a given year. This affected area is converted into an average fire return interval which can be compared to observations. 3 When driven by observed climate for the 20th century (at a 0.5 ° longitude/latitude resolution), the model yielded fire return intervals in good agreement with observations for many regions (except parts of semiarid Africa and boreal Siberia). We suggest that further improvement for these regions must involve additional process descriptions such as permafrost and fuel/fire dynamics.

625 citations


Journal ArticleDOI
TL;DR: In this paper, the dependence of woody cover on mean annual precipitation (MAP), soil properties (texture, nitrogen mineralization potential and total phosphorus), fire regimes, and herbivory (grazer, mixed feeders and browsers) was determined for 161 savanna sites across Africa using stochastic gradient boosting, a refinement of the regression tree analysis technique.
Abstract: Aim To determine the functional relationships between, and the relative importance of, different driver variables (mean annual precipitation, soil properties, fire and herbivory) in regulating woody plant cover across broad environmental gradients in African savannas. Location Savanna grasslands of East, West and Southern Africa. Methods The dependence of woody cover on mean annual precipitation (MAP), soil properties (texture, nitrogen mineralization potential and total phosphorus), fire regimes, and herbivory (grazer, browser + mixed feeder, and elephant biomass) was determined for 161 savanna sites across Africa using stochastic gradient boosting, a refinement of the regression tree analysis technique. Results All variables were significant predictors of woody cover, collectively explaining 71% of the variance in our data set. However, their relative importance as regulators of woody cover varied. MAP was the most important predictor, followed by fire return periods, soil characteristics and herbivory regimes. Woody cover showed a strong positive dependence on MAP between 200 and 700 mm, but no dependence on MAP above this threshold when the effects of other predictors were accounted for. Fires served to reduce woody cover below rainfall-determined levels. Woody cover showed a complex, non-linear relationship with total soil phosphorus, and was negatively correlated with clay content. There was a strong negative dependence of woody cover on soil nitrogen (N) availability, suggesting that increased N-deposition may cause shifts in savannas towards more grassy states. Elephants, mixed feeders and browsers had negative effects on woody cover. Grazers, on the other hand, depressed woody cover at low biomass, but favoured woody vegetation when their biomass exceeded a certain threshold. Main conclusions Our results indicate complex and contrasting relationships between woody cover, rainfall, soil properties and disturbance regimes in savannas, and suggest that future environmental changes such as altered precipitation regimes, N-enrichment and elevated levels of CO2 are likely to have opposing, and potentially interacting, influences on the tree–grass balance in savannas.

550 citations


Journal ArticleDOI
TL;DR: In this paper, the periods of cambial activity and cell differentiation were assessed on a weekly time-scale on histological sections of Cambium and wood tissue collected over 2 to 5 years per site from 1998 to 2005 from the stems of seven conifer species.
Abstract: Aim To identify temperatures at which cell division and differentiation are active in order to verify the existence of a common critical temperature determining growth in conifers of cold climates. Location Ten European and Canadian sites at different latitudes and altitudes. Methods The periods of cambial activity and cell differentiation were assessed on a weekly time-scale on histological sections of cambium and wood tissue collected over 2 to 5 years per site from 1998 to 2005 from the stems of seven conifer species. All data were compared with daily air temperatures recorded from weather stations located close to the sites. Logistic regressions were used to calculate the probability of xylogenesis and of cambium being active at a given temperature. Results Xylogenesis lasted from May to October, with a growing period varying from 3 to 5 months depending on location and elevation. Despite the wide geographical range of the monitored sites, temperatures for onset and ending of xylogenesis converged towards narrow ranges with average values around 4–5, 8–9 and 13–14 °C for daily minimum, mean and maximum temperature, respectively. On the contrary, cell division in the cambium stopped in July−August, when temperatures were still high. Main conclusions Wood formation in conifers occurred when specific critical temperatures were reached. Although the timing and duration of xylogenesis varied among species, sites and years, the estimated temperatures were stable for all trees studied. These results provide biologically based evidence that temperature is a critical factor limiting production and differentiation of xylem cells in cold climates. Although daily temperatures below 4−5 °C are still favourable for photosynthesis, thermal conditions below these values could inhibit the allocation of assimilated carbon to structural investment, i.e. xylem growth.

499 citations


Journal ArticleDOI
TL;DR: In this paper, the spatial variation of the community specialization index (CSI) using 1028 replicates from the French Breeding Bird Survey along spatial gradients of landscape fragmentation and recent landscape disturbance, measured independently, and accounting for spatial autocorrelation.
Abstract: Aim Wo rldwide, functional homogenization is now considered to be one of the most prominent forms of biotic impoverishment induced by current global changes. Ye t this process has hardly been quantified on a large scale through simple indices, and the connection between landscape disturbance and functional homogenization has hardly been established. Here we test whether changes in land use and landscape fragmentation are associated with functional homogenization of bird communities at a national scale. Location France. Methods We estimated functional homogenization of a community as the average specialization of the species present in that community. We studied the spatial variation of this community specialization index (CSI) using 1028 replicates from the French Breeding Bird Survey along spatial gradients of landscape fragmentation and recent landscape disturbance, measured independently, and accounting for spatial autocorrelation. Results The CSI was very sensitive to both measures of environmental degradation: on average, 23% of the difference in the CSI values between two sample sites was attributed to the difference in fragmentation and the disturbance between sites. This negative correlation between CSI and sources of landscape degradation was consistent over various habitats and biogeographical zones. Main conclusions We demonstrate that the functional homogenization of bird communities is strongly positively correlated to landscape disturbance and fragmentation. We suggest that the CSI is particularly effective for measuring functional homogenization on both local and global scales for any sort of organism and with abundance or presence‐absence data.

402 citations


Journal ArticleDOI
TL;DR: In this article, a robust, comprehensive global biome reconstruction for the Middle Pliocene (c. 3.6-2.6 Ma) is presented, which is based on an internally consistent palaeobotanical data set and a coupled climate-vegetation model.
Abstract: Aim To produce a robust, comprehensive global biome reconstruction for the Middle Pliocene (c. 3.6–2.6 Ma), which is based on an internally consistent palaeobotanical data set and a state-of-the-art coupled climate–vegetation model. The reconstruction gives a more rigorous picture of climate and environmental change during the Middle Pliocene and provides a new boundary condition for future general circulation model (GCM) studies. Location Global. Methods Compilation of Middle Pliocene vegetation data from 202 marine and terrestrial sites into the comprehensive GIS data base TEVIS (Tertiary Environmental Information System). Translation into an internally consistent classification scheme using 28 biomes. Comparison and synthesis of vegetation reconstruction from palaeodata with the outputs of the mechanistically based BIOME4 model forced by climatology derived from the HadAM3 GCM. Results The model results compare favourably with available palaeodata and highlight the importance of employing vegetation–climate feedbacks and the anomaly method in biome models. Both the vegetation reconstruction from palaeobotanical data and the BIOME4 prediction indicate a general warmer and moister climate for the Middle Pliocene. Evergreen taiga as well as temperate forest and grassland shifted northward, resulting in much reduced tundra vegetation. Warm-temperate forests (with subtropical taxa) spread in mid and eastern Europe and tropical savannas and woodland expanded in Africa and Australia at the expense of deserts. Discrepancies which occurred between data reconstruction and model simulation can be related to: (1) poor spatial model resolution and data coverage; (2) uncertainties in delimiting biomes using climate parameters; or (3) uncertainties in model physics and/or geological boundary conditions. Main conclusions The new global biome reconstruction combines vegetation reconstruction from palaeobotanical proxies with model simulations. It is an important contribution to the further understanding of climate and vegetation changes during the Middle Pliocene warm interval and will enhance our knowledge about how vegetation may change in the future.

270 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined the trends of 1982-2003 satellite-derived normalized difference vegetation index (NDVI) values at several spatial scales within tundra and boreal forest areas of Alaska.
Abstract: Aim To examine the trends of 1982–2003 satellite-derived normalized difference vegetation index (NDVI) values at several spatial scales within tundra and boreal forest areas of Alaska. Location Arctic and subarctic Alaska. Methods Annual maximum NDVI data from the twice monthly Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 1982–2003 data set with 64-km2 pixels were extracted from a spatial hierarchy including three large regions: ecoregion polygons within regions, ecozone polygons within boreal ecoregions and 100-km climate station buffers. The 1982–2003 trends of mean annual maximum NDVI values within each area, and within individual pixels, were computed using simple linear regression. The relationship between NDVI and temperature and precipitation was investigated within climate station buffers. Results At the largest spatial scale of polar, boreal and maritime regions, the strongest trend was a negative trend in NDVI within the boreal region. At a finer scale of ecoregion polygons, there was a strong positive NDVI trend in cold arctic tundra areas, and a strong negative trend in interior boreal forest areas. Within boreal ecozone polygons, the weakest negative trends were from areas with a maritime climate or colder mountainous ecozones, while the strongest negative trends were from warmer basin ecozones. The trends from climate station buffers were similar to ecoregion trends, with no significant trends from Bering tundra buffers, significant increasing trends among arctic tundra buffers and significant decreasing trends among interior boreal forest buffers. The interannual variability of NDVI among the arctic tundra buffers was related to the previous summer warmth index. The spatial pattern of increasing tundra NDVI at the pixel level was related to the west-to-east spatial pattern in changing climate across arctic Alaska. There was no significant relationship between interannual NDVI and precipitation or temperature among the boreal forest buffers. The decreasing NDVI trend in interior boreal forests may be due to several factors including increased insect/disease infestations, reduced photosynthesis and a change in root/leaf carbon allocation in response to warmer and drier growing season climate. Main conclusions There was a contrast in trends of 1982–2003 annual maximum NDVI, with cold arctic tundra significantly increasing in NDVI and relatively warm and dry interior boreal forest areas consistently decreasing in NDVI. The annual maximum NDVI from arctic tundra areas was strongly related to a summer warmth index, while there were no significant relationships in boreal areas between annual maximum NDVI and precipitation or temperature. Annual maximum NDVI was not related to spring NDVI in either arctic tundra or boreal buffers.

241 citations


Journal ArticleDOI
TL;DR: It is shown that six of the major green turtle nesting populations in the world have been increasing over the past two to three decades following protection from human hazards such as exploitation of eggs and turtles, suggesting that the green turtle is not on the brink of global extinction.
Abstract: Aim To critically review the status of the green sea turtle (Chelonia mydas) using the best available scientific studies as there is a prevailing view that this species is globally endangered and its marine ecosystem functions compromised. Location Ogasawara (Japan), Hawaii (USA), Great Barrier Reef (Australia), Florida (USA), Tortuguero (Costa Rica). Methods We compiled seasonal nesting activity data from all reliable continuous long-term studies (> 25 years), which comprised data series for six of the world's major green turtle rookeries. We estimated the underlying time-specific trend in these six rookery-specific nester or nest abundance series using a generalized smoothing spline regression approach. Results Estimated rates of nesting population increase ranged from c. 4-14% per annum over the past two to three decades. These rates varied considerably among the rookeries, reflecting the level of historical exploitation. Similar increases in nesting population were also evident for many other green turtle stocks that have been monitored for shorter durations than the long-term studies presented here. Main conclusions We show that six of the major green turtle nesting populations in the world have been increasing over the past two to three decades following protection from human hazards such as exploitation of eggs and turtles. This population recovery or rebound capacity is encouraging and suggests that the green turtle is not on the brink of global extinction even though some stocks have been seriously depleted and are still below historical abundance levels. This demonstrates that relatively simple conservation strategies can have a profound effect on the recovery of once-depleted green turtle stocks and presumably the restoration of their ecological function as major marine consumers.

240 citations


Journal ArticleDOI
TL;DR: In this paper, an empirical predictive model (Maxent) for the occurrence of periodic vegetation patterns, based on environmental predictors and known occurrences verified on Landsat satellite images, is presented.
Abstract: Aim Vegetation exhibiting landscape-scale regular spatial patterns has been reported for arid and semi-arid areas world-wide. Recent theories state that such structures are bound to low-productivity environments and result from a self-organization process. Our objective was to test this relationship between periodic pattern occurrence and environmental factors at a global scale and to parametrize a predictive distribution model. Location Arid and semi-arid areas world-wide. Methods We trained an empirical predictive model (Maxent) for the occurrence of periodic vegetation patterns, based on environmental predictors and known occurrences verified on Landsat satellite images. Results This model allowed us to discover previously unreported pattern locations, and to report the first ever examples of spotted patterns in natural systems. Relationships to the main environmental drivers are discussed. Main conclusions These results confirm that periodic patterned vegetations are ubiquitous at the interface between arid and semi-arid regions. Self-organized patterning appears therefore to be a biome-scale response to environmental conditions, including soil and topography. The set of correlations between vegetation patterns and their environmental conditions presented in this study will need to be reproduced in future modelling attempts.

239 citations



Journal ArticleDOI
TL;DR: Findings suggest that zoning by altitudes or ridges would be helpful for the conservation of tree populations with the onset of global warming and highlight the importance of phenotypic examinations in detecting altitudinal differences.
Abstract: Aim To understand global patterns of genetic variation in plant species on mountains and to consider the significance of mountains for the genetic structure and evolution of plant species. Location Global. Methods We review published studies. Results Genetic diversity within populations can vary along altitudinal gradients in one of four patterns. Eleven of 42 cited studies (26% of the total) found that populations at intermediate altitudes have greater diversity than populations at lower and higher altitudes. This is because the geographically central populations are under optimal environmental conditions, whereas the peripheral populations are in suboptimal situations. The second pattern, indicating that higher populations have less diversity than lower populations, was found in eight studies (19%). The third pattern, indicating that lower populations have lower diversity than higher populations, was found in 10 studies (24%). In 12 studies (29%), the intrapopulation genetic variation was found to be unaffected by altitude. Evidence of altitudinal differentiation was found in more than half of these studies, based on measurements of a range of variables including genome size, number of chromosomes or a range of loci using molecular markers. Furthermore, great variation has been found in phenotypes among populations at different altitudes in situ and in common garden experiments, even in cases where there was no associated variation in molecular composition. Mountains can be genetic barriers for species that are distributed at low elevations, but they can also provide pathways for species that occupy high-elevation habitats. [Correction added after publication 9 October 2007: ‘less diversity’ changed to ‘greater diversity’ in the second sentence of the Results section of the Abstract]. Main conclusions Genetic diversity within populations can vary along altitudinal gradients as a result of several factors. The results highlight the importance of phenotypic examinations in detecting altitudinal differences. The influence of mountain ridges on genetic differentiation varies depending, inter alia , on the elevation at which the species occurs. Based on these findings, zoning by altitudes or ridges would be helpful for the conservation of tree populations with the onset of global warming.

Journal ArticleDOI
TL;DR: The results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds.
Abstract: Aim To understand cross-taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad-scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non-frugivores) and fleshy-fruited and non-fleshy-fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad-scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.

Journal ArticleDOI
TL;DR: In this paper, a model selection approach based on the Akaike information criterion (AIC) was used in geographical data by modelling patterns of mammal species in South America represented in a grid system with 2° of resolution, as a function of five environmental explanatory variables.
Abstract: Aim Although parameter estimates are not as affected by spatial autocorrelation as Type I errors, the change from classical null hypothesis significance testing to model selection under an information theoretic approach does not completely avoid problems caused by spatial autocorrelation. Here we briefly review the model selection approach based on the Akaike information criterion (AIC) and present a new routine for Spatial Analysis in Macroecology (SAM) software that helps establishing minimum adequate models in the presence of spatial autocorrelation. Innovation We illustrate how a model selection approach based on the AIC can be used in geographical data by modelling patterns of mammal species in South America represented in a grid system (n = 383) with 2° of resolution, as a function of five environmental explanatory variables, performing an exhaustive search of minimum adequate models considering three regression methods: non-spatial ordinary least squares (OLS), spatial eigenvector mapping and the autoregressive (lagged-response) model. The models selected by spatial methods included a smaller number of explanatory variables than the one selected by OLS, and minimum adequate models contain different explanatory variables, although model averaging revealed a similar rank of explanatory variables. Main conclusions We stress that the AIC is sensitive to the presence of spatial autocorrelation, generating unstable and overfitted minimum adequate models to describe macroecological data based on non-spatial OLS regression. Alternative regression techniques provided different minimum adequate models and have different uncertainty levels. Despite this, the averaged model based on Akaike weights generates consistent and robust results across different methods and may be the best approach for understanding of macroecological patterns.

Journal ArticleDOI
TL;DR: In this article, a series of meta-analyses using arthropod richness and abundance data derived from the published literature were performed to determine whether combined taxa, feeding guilds and broad taxonomic groups respond in a globally consistent manner to a range of agricultural land-use and management intensification scenarios.
Abstract: Aim: To determine whether arthropod richness and abundance for combined taxa, feeding guilds and broad taxonomic groups respond in a globally consistent manner to a range of agricultural land-use and management intensification scenarios. Location: Mixed land-use agricultural landscapes, globally. Methods: We performed a series of meta-analyses using arthropod richness and abundance data derived from the published literature. Richness and abundance were compared among land uses that commonly occur in agricultural landscapes and that represent a gradient of increasing intensification. These included land-use comparisons, such as wooded native vegetation compared with improved pasture, and a management comparison, reduced-input cropping compared with conventional cropping. Data were analysed using three different meta-analytical techniques, including a simple vote counting method and a formal fixed-effects/random-effects meta-analysis. Results: Arthropod richness was significantly higher in areas of less intensive land use. The decline in arthropod richness was greater between native vegetation and agricultural land uses than among different agricultural land uses. These patterns were evident for all taxa combined, predators and decomposers, but not herbivorous taxa. Overall, arthropod abundance was greater in native vegetation than in agricultural lands and under reduced-input cropping compared with conventional cropping. Again, this trend was largely mirrored by predators and decomposers, but not herbivores. Main conclusions: The greater arthropod richness found in native vegetation relative to agricultural land types indicates that in production landscapes still containing considerable native vegetation, retention of that vegetation may well be the most effective method of conserving arthropod biodiversity. Conversely, in highly intensified agricultural landscapes with little remaining native vegetation, the employment of reduced-input crop management and the provision of relatively low-intensity agricultural land uses, such as pasture, may prove effective in maintaining arthropod diversity, and potentially in promoting functionally important groups such as predators and decomposers.

Journal ArticleDOI
TL;DR: Small size seems to promote fast diversification of disparate body plans, and the absence of mammalian predators allows insular lizards to attain larger body sizes by means of release from predation and allows them to evolve into the top predator niche.
Abstract: Aim Body size is instrumental in influencing animal physiology, morphology, ecology and evolution, as well as extinction risk. I examine several hypotheses regarding the influence of body size on lizard evolution and extinction risk, assessing whether body size influences, or is influenced by, species richness, herbivory, island dwelling and extinction risk. Location World-wide. Methods I used literature data and measurements of museum and live specimens to estimate lizard body size distributions. Results I obtained body size data for 99% of the world’s lizard species. The body size‐frequency distribution is highly modal and right skewed and similar distributions characterize most lizard families and lizard assemblages across biogeographical realms. There is a strong negative correlation between mean body size within families and species richness. Herbivorous lizards are larger than omnivorous and carnivorous ones, and aquatic lizards are larger than non-aquatic species. Diurnal activity is associated with small body size. Insular lizards tend towards both extremes of the size spectrum. Extinction risk increases with body size of species for which risk has been assessed. Main conclusions Small size seems to promote fast diversification of disparate body plans. The absence of mammalian predators allows insular lizards to attain larger body sizes by means of release from predation and allows them to evolve into the top predator niche. Island living also promotes a high frequency of herbivory, which is also associated with large size. Aquatic and nocturnal lizards probably evolve large size because of thermal constraints. The association between large size and high extinction risk, however, probably reflects a bias in the species in which risk has been studied.

Journal ArticleDOI
TL;DR: The results suggest that body size and fecundity only affect extinction risk indirectly through their effect on geographical range size, which has consequences for conservation strategy: it would be inefficient to allocate conservation resources on the basis of low fecundities or large body size.
Abstract: Aim Our aim was to test whether extinction risk of frog species could be predicted from their body size, fecundity or geographical range size. Because small geographical range size is a correlate of extinction risk in many taxa, we also tested hypotheses about correlates of range size in frogs. Location Global. Methods Using a large comparative data set (n = 527 species) compiled from the literature, we performed bivariate and multiple regressions through the origin of independent contrasts to test proposed macroecological patterns and correlates of extinction risk in frogs. We also created minimum adequate models to predict snout–vent length, clutch size, geographical range size and IUCN Red List status in frogs. Parallel non-phylogenetic analyses were also conducted. We verified the results of the phylogenetic analyses using gridded data accounting for spatial autocorrelation. Results The most threatened frog species tend to have small geographical ranges, although the relationship between range and extinction risk is not linear. In addition, tropical frogs with small clutches have the smallest ranges. Clutch size was strongly positively correlated with geographical range size (r2 = 0.22) and body size (r2 = 0.28). Main conclusions Our results suggest that body size and fecundity only affect extinction risk indirectly through their effect on geographical range size. Thus, although large frogs with small clutches tend to be endangered, there is no comparative evidence that this relationship is direct. If correct, this inference has consequences for conservation strategy: it would be inefficient to allocate conservation resources on the basis of low fecundity or large body size; instead it would be better to protect areas that contain many frog species with small geographical ranges.

Journal ArticleDOI
TL;DR: In this article, a simple mathematical model that incorporates the effect of habitat diversity on the species-area relationship (SAR) was proposed, showing that increasing habitat diversity affects the SAR in different ways, but the dominant effect is to increase the slope of the SAR.
Abstract: Aim To examine the way in which ‘area’ and ‘habitat diversity’ interact in shaping species richness and to find a simple and valid way to express this interaction. Location The Natura 2000 network of terrestrial protected areas in Greece, covering approximately 16% of the national territory. Methods We used the Natura 2000 framework, which provides a classification scheme for natural habitat types, to quantify habitat heterogeneity. We analysed data for the plant species composition in 16,143 quadrats in which 5044 species and subspecies of higher plants were recorded. We built a simple mathematical model that incorporates the effect of habitat diversity on the species–area relationship (SAR). Results Our analysis showed that habitat diversity was correlated with area. However, keeping habitat diversity constant, species richness was related to area; while keeping area constant, species richness was related to habitat diversity. Comparing the SAR of the 237 sites we found that the slope of the species–area curve was related to habitat diversity. Main conclusions Discussion of the causes of the SAR has often focused on the primacy of area per se versus habitat heterogeneity, even though the two mechanisms are not mutually exclusive and should be considered jointly. We find that increasing habitat diversity affects the SAR in different ways, but the dominant effect is to increase the slope of the SAR. While a full model fit typically includes a variety of terms involving both area and habitat richness, we find that the effect of habitat diversity can be reduced to a linear perturbation of the slope of the species accumulation curve.

Journal ArticleDOI
TL;DR: The analyses suggest that both local and broad-scale patterns of mammal body size variation are influenced in part by the strong mesoscale climatic gradients existing in mountainous areas.
Abstract: Aim To describe the geographical pattern of mean body size of the non-volant mammals of the Nearctic and Neotropics and evaluate the influence of five environmental variables that are likely to affect body size gradients. Location The Western Hemisphere. Methods We calculated mean body size (average log mass) values in 110 × 110 km cells covering the continental Nearctic and Neotropics. We also generated cell averages for mean annual temperature, range in elevation, their interaction, actual evapotranspiration, and the global vegetation index and its coefficient of variation. Associations between mean body size and environmental variables were tested with simple correlations and ordinary least squares multiple regression, complemented with spatial autocorrelation analyses and split-line regression. We evaluated the relative support for each multiple-regression model using AIC. Results Mean body size increases to the north in the Nearctic and is negatively correlated with temperature. In contrast, across the Neotropics mammals are largest in the tropical and subtropical lowlands and smaller in the Andes, generating a positive correlation with temperature. Finally, body size and temperature are nonlinearly related in both regions, and split-line linear regression found temperature thresholds marking clear shifts in these relationships (Nearctic 10.9 ° C; Neotropics 12.6 ° C). The increase in body sizes with decreasing temperature is strongest in the northern Nearctic, whereas a decrease in body size in mountains dominates the body size gradients in the warmer parts of both regions. Main conclusions We confirm previous work finding strong broad-scale Bergmann trends in cold macroclimates but not in warmer areas. For the latter regions (i.e. the southern Nearctic and the Neotropics), our analyses also suggest that both local and broad-scale patterns of mammal body size variation are influenced in part by the strong mesoscale climatic gradients existing in mountainous areas. A likely explanation is that reduced habitat sizes in mountains limit the presence of larger-sized mammals.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed digitized aerial photographs taken in 1941 and 1994, using image processing and geographical information system technology, enabled the quantification of change in the coverage of forest and grassland patches that occur within a subcoastal region of the Australian monsoon tropics.
Abstract: 1 Analysis of digitized aerial photographs taken in 1941 and 1994, using image processing and geographical information system technology, enabled the quantification of change in the coverage of forest and grassland patches that occur within a Eucalyptus savanna matrix in a subcoastal region of the Australian monsoon tropics. The 3058 ha study area was orientated along a low escarpment that separated a sandstone plateau from lowlands that comprised 58% and 42% of the area, respectively. 2 In the 53-year period, humans modified less than 1% of the study area, primarily for road building, and primarily in savanna areas. More than 85% of the study area at both sample times was covered by savanna. However, over the same period, the forest coverage increased from 5.03% to 9.91% of the study area and coverage of grassland decreased from 6.70% to 2.47%. The aerial photography also showed that tree density in the savanna had increased, although this was not assessed quantitatively. 3 There was an increase in the number of forest patches from 116 to 142. The number of grassland patches decreased (particularly those > 1 ha) from 87 to 59, although the size class distribution of forest and grassland patches was statistically similar for both sample times. 4 A 50-m GIS buffer was used to distinguish creek-lines environments from surrounding catchments. Using this criterion, 14% of the study area was classified as plateau creek-lines and 9% lowland creek-lines. Although the expansion of forest and loss of grassland varied significantly amongst catchment and creek-lines on the plateau and lowlands, the 1941 rank order of coverage of each vegetation type was maintained in these four landscape categories in 1994. In both years the greatest extent of forest and grassland occurred on the lowland catchments, despite their accounting for only one-third of the study area. 5 Transition matrices for vegetation change among the four landscape categories demonstrated that, unlike the other vegetation types, grasslands, particularly on the plateau, had a low probability of remaining unchanged during the study period. 6 The cause(s) of the overall increase of woody biomass across the topographic and edaphic gradient remains unclear but may be related to a period of increased rainfall since the 1970s, as well as to the cessation of Aboriginal landscape burning at the beginning of the study period.

Journal ArticleDOI
TL;DR: In this paper, the authors calibrate ecological niche models to assess the climatic requirements of Laurus L. (Lauraceae), an emblematic relic from the Tethyan subtropical flora, subsequently using these models to infer how the range dynamics of the Laurus were affected by Plio-Pleistocene climate changes.
Abstract: Aim Climate changes are thought to be responsible for the retreat and eventual extinction of subtropical lauroid species that covered much of Europe and North Africa during the Palaeogene and early Neogene; little is known, however, of the spatial and temporal patterns of this demise. Herein we calibrate ecological niche models to assess the climatic requirements of Laurus L. (Lauraceae), an emblematic relic from the Tethyan subtropical flora, subsequently using these models to infer how the range dynamics of Laurus were affected by Plio-Pleistocene climate changes. We also provide predictions of likely range changes resulting from future climatic scenarios.

Journal ArticleDOI
TL;DR: In this paper, the authors used a 53-year data set to document the latitudinal patterns in the climate responses of the timing of autumn leaf colouring and fall for two tree species over a wide range of latitudes in Japan (31 to 44°N).
Abstract: Aim To estimate the potential effect of global climate change on the phenological responses of plants it is necessary to estimate spatial variations at larger scales. However, previous studies have not estimated latitudinal patterns in the phenological response directly. We hypothesized that the phenological response of plants varies with latitude, and estimated the phenological response to long-term climate change using autumn phenological events that have been delayed by recent climate change. Location Japan. Methods We used a 53-year data set to document the latitudinal patterns in the climate responses of the timing of autumn leaf colouring and fall for two tree species over a wide range of latitudes in Japan (31 to 44° N). We calculated single regression slopes for leaf phenological timing and air temperature across Japan and tested their latitudinal patterns using regression models. The effects of latitude, time and their interaction on the responses of the phenological timings were also estimated using generalized linear mixed models. Results Our results showed that single regression slopes of leaf phenological timing and air temperature in autumn were positive at most stations. Higher temperatures can delay the timing of leaf phenology. Negative relationships were found between the phenological response of leaves to temperature and latitude. Single regression slopes of the phenological responses at lower latitudes were larger than those at higher latitudes. Main conclusions We found negative relationships between leaf phenological responsiveness and latitude. These findings will be important for predicting phenological timing with global climate change.

Journal ArticleDOI
TL;DR: In this paper, the effects of nine species trait variables on the accuracy of bioclimatic envelope models built for 98 butterfly species were analyzed using data from a national butterfly atlas monitoring scheme (NAFI) collected from 1991-2003 with a resolution of 10 × 10 km.
Abstract: Aim To analyse the effects of nine species trait variables on the accuracy of bioclimatic envelope models built for 98 butterfly species. Location Finland, northern Europe. Methods Data from a national butterfly atlas monitoring scheme (NAFI) collected from 1991–2003 with a resolution of 10 × 10 km were used in the analyses. Generalized additive models (GAMs) were constructed for 98 butterfly species to predict their occurrence as a function of climatic variables. Modelling accuracy was measured as the cross-validation area under the curve (AUC) of the receiver–operating characteristic plot. Observed variation in modelling accuracy was related to species traits using multiple GAMs. The effects of phylogenetic relatedness among butterflies were accounted for by using generalized estimation equations. Results The values of the cross-validation AUC for the 98 species varied between 0.56 and 1.00 with a mean of 0.79. Five species trait variables were included in the GAM that explained 71.4% of the observed variation in modelling accuracy. Four variables remained significant after accounting for phylogenetic relatedness. Species with high mobility and a long flight period were modelled less accurately than species with low mobility and a short flight period. Large species (>50 mm in wing span) were modelled more accurately than small ones. Species inhabiting mires had especially poor models, whereas the models for species inhabiting rocky outcrops, field verges and open fells were more accurate compared with other habitats. Main conclusions These results draw attention to the importance of species traits variables for species–climate impact models. Most importantly, species traits may have a strong impact on the performance of bioclimatic envelope models, and certain trait groups can be inherently difficult to model reliably. These uncertainties should be taken into account by downweighting or excluding species with such traits in studies applying bioclimatic modelling and making assessments of the impacts of climate change.

Journal ArticleDOI
TL;DR: A monotonic decline of species richness with latitude for groundwater and lotic habitats, but a hump-shaped relationship for lentic habitats is found; the dispersal propensity of lentic species facilitated the recolonization of central Europe after the last glaciation.
Abstract: Aim We analysed the variation of species richness in the European freshwater fauna across latitude. In particular, we compared latitudinal patterns in species richness and β-diversity among species adapted to different habitat types. Location Europe. Methods We compiled data on occurrence for 14,020 animal species across 25 pre-defined biogeographical regions of European freshwaters from the Limnofauna Europaea. Furthermore, we extracted information on the habitat preferences of species. We assigned species to three habitat types: species adapted to groundwater, lotic (running water) and lentic (standing water) habitats. We analysed latitudinal patterns of species richness, the proportion of lentic species and β-diversity. Results Only lentic species showed a significant species–area relationship. We found a monotonic decline of species richness with latitude for groundwater and lotic habitats, but a hump-shaped relationship for lentic habitats. The proportion of lentic species increased from southern to northern latitudes. β-Diversity declined from groundwater to lentic habitats and from southern to northern latitudes. Main conclusions The differences in the latitudinal variation of species richness among species adapted to different habitat types are in part due to differences in the propensity for dispersal. Since lentic habitats are less persistent than lotic or groundwater habitats, lentic species evolved more efficient strategies for dispersal. The dispersal propensity of lentic species facilitated the recolonization of central Europe after the last glaciation. Overall, we stress the importance of considering the history of regions and lineages as well as the ecological traits of species for understanding patterns of biodiversity.

Journal ArticleDOI
TL;DR: This study provides the first global examination of both seed mass and production traits in native and invasive species and found no significant difference in seed mass between invasives and natives after growth form had been accounted for.
Abstract: Aim Propagule size and output are critical for the ability of a plant species to colonize new environments. If invasive species have a greater reproductive output than native species (via more and/or larger seeds), then they will have a greater dispersal and establishment ability. Previous comparisons within plant genera, families or environments have conflicted over the differences in reproductive traits between native and invasive species. We went beyond a genus-, family- or habitat-specific approach and analysed data for plant reproductive traits from the global literature, to investigate whether: (1) seed mass and production differ between the original and introduced ranges of invasive species; (2) seed mass and production differ between invasives and natives; and (3) invasives produce more seeds per unit seed mass than natives. Location Global. Methods We combined an existing data set of native plant reproductive data with a new data compilation for invasive species. We used t-tests to compare original and introduced range populations, two-way ANOVAs to compare natives and invasives, and an ANCOVA to examine the relationship between seed mass and production for natives and invasives. The ANCOVA was performed again incorporating phylogenetically independent contrasts to overcome any phylogenetic bias in the data sets. Results Neither seed mass nor seed production of invasive species differed between their introduced and original ranges. We found no significant difference in seed mass between invasives and natives after growth form had been accounted for. Seed production was greater for invasive species overall and within herb and woody growth forms. For a given seed mass, invasive species produced 6.7-fold (all species), 6.9-fold (herbs only) and 26.1-fold (woody species only) more seeds per individual per year than native species. The phylogenetic ANCOVA verified that this trend did not appear to be influenced by phylogenetic bias within either data set. Main conclusions This study provides the first global examination of both seed mass and production traits in native and invasive species. Invasive species express a strategy of greater seed production both overall and per unit seed mass compared with natives. The consequent increased likelihood of establishment from long-distance seed dispersal may significantly contribute to the invasiveness of many exotic species.

Journal ArticleDOI
TL;DR: The availability of host trees and their characteristics may be more important than the direct effects of the physical environment in controlling the success of lianas in Neotropical forests.
Abstract: Aim We seek to determine the factors which control the success of lianas across macroecological gradients. Lianas have a strong impact on the growth, mortality and biomass of tropical trees, and are reported to be increasing in dominance, so understanding their behaviour is important from the perspectives of both ecological and global change. Location Lowland and montane Neotropical forests. Methods Using 65 standardized samples of lianas ( ≥ 2.5 cm diameter) from across the Neotropics, we attempted to account for characteristics of both the environment and the forest in explaining macroecological variation in liana success in Neotropical forests, using regression analyses and structural equation modelling. Results We found that both liana density and basal area were unrelated to mean annual precipitation, dry season length or soil variables, except for a weak effect of mean annual precipitation on liana basal area. Structural characteristics of the forest explained more of the variation in liana density and basal area than the physical environment. More disturbed forests generally tended to have a higher liana density. Liana basal area, however, was highest in undisturbed forests. Main conclusions The availability of host trees and their characteristics may be more important than the direct effects of the physical environment in controlling the success of lianas in Neotropical forests. Changes to the tropical climate in the coming century may not strongly affect lianas directly, but could have very substantial indirect effects via changes in tree community structure and dynamics.

Journal ArticleDOI
TL;DR: In this article, a model to account for self-assembly of the slough-ridge-tree island patterned landscape of the central Everglades in southern Florida via feedbacks among landforms, hydrology, vegetation and biogeochemistry was presented.
Abstract: Aim We present a model to account for self-assembly of the slough‐ridge‐tree island patterned landscape of the central Everglades in southern Florida via feedbacks among landforms, hydrology, vegetation and biogeochemistry. We test aspects of this model by analysing vegetation composition in relation to local and landscape-level drivers. Location We quantified vegetation composition and environmental characteristics in central Water Conservation Area (WCA) 3A, southern WCA-3A and southern WCA-3B in southern Florida, based on their divergence in water management and flow regimes over the past 50 years. Methods In 562 quadrats, we estimated species coverages and quantified maximum, minimum and average water depth, soil depth to bedrock, normalized difference vegetation index (NDVI) and proximity to the nearest tree island. We used non-metric multi-dimensional scaling (NMS) to relate compositional variation to local and landscape-level factors, and evaluated environmental differences among eight a priori vegetation types via  . Results Wa ter depth and hydroperiod decreased from sloughs to ridges to tree islands, but regions also differed significantly in the abundance of several community types and the hydroregimes characterizing them. NMS revealed two significant axes of compositional variation, tied to local gradients of water depth and correlated factors, and to a landscape-scale gradient of proximity to tall tree islands. Sawgrass height and soil thickness increased toward higher ridges, and NDVI was greatest on tree islands. Main conclusions This study supports four components of our model: positive feedback of local substrate height on itself, woody plant invasion and subsequent P transport and concentration by top predators nesting on taller tree islands, compositional shifts in sites close to tree islands due to nutrient leakage, and flow-induced feedback against total raised area. Regional divergence in the relationship of community types to current hydroregimes appears to reflect a lag of a few years after shifts in water management; a longer lag would be expected for shifts in landscape patterning. Both local and landscape-level drivers appear to shape vegetation composition and soil thickness in the central Everglades.

Journal ArticleDOI
TL;DR: The impact of non-native species on β diversity can be determined, at least in part, through their historical and geographical associations with anthropogenic activities, if archaeophytes represents the long-term biogeographical outcome for human commensal species, neophytes could develop similar patterns.
Abstract: Aim We e xamine how two categories of non-native species (archaeophyte and neophyte, introduced before and after  1500, respectively) have had different impacts on β diversity across European urban floras. Our goal is to use the unique biological perspective provided by urban areas, and the contrasting historical and geographical perspectives provided by archaeophytes and neophytes, to infer how non-native species will impact upon β diversity in the future. Location Tw enty-two urban areas located in seven European countries. Methods We used the β -sim dissimilarity index to estimate the level of β diversity for 231 unique pair-wise combinations of 22 urban floras. We examined bivariate plots of dissimilarity by geographical separation of city centres to evaluate distance decay of similarity for native species, archaeophytes and neophytes. Results Based on average percentages, 52.8% (SD = 8.2%) of species in the urban floras were identified as non-native with 28.3% (SD = 6.9%) classified as neophytes and 24.5% (SD = 4.9%) as archaeophytes. Relative to native species, across urban floras, archaeophytes were associated with higher compositional similarity and weaker distance decay patterns, whereas neophytes were associated with lower compositional similarity and stronger distance decay patterns. Main conclusions Across European urban floras, archaeophytes and neophytes occurred in similar numbers but archaeophytes were consistently associated with lower β diversity and neophytes with higher β diversity. Thus, the impact of non-native species on β diversity can be determined, at least in part, through their historical and geographical associations with anthropogenic activities. If archaeophytes represent the long-term biogeographical outcome for human commensal species, neophytes could develop similar patterns. The consequences, however, are likely to be more substantial ecologically and geographically due to the increasing numbers of neophytes and their global anthropogenic associations. Nevertheless, at present, our findings suggest that, based on occurrence information, neophytes have not achieved this state with European urban floras retaining regionally distinct assemblages of neophytes.

Journal ArticleDOI
TL;DR: Global patterns in fruiting seasons are associated with global variation in climate, and the timing of reproduction in fleshy fruited plant communities appears to be determined, at least in part, by spatial and temporal variation in energy supplies needed to subsidise plant reproduction.
Abstract: Aim To identify geographical and climatic correlates of the timing of fruit production in fleshy fruited plant communities. Location Global. Methods We searched the literature for studies documenting monthly variation in the number of fleshy fruited species bearing ripe fruits in plant communities (i.e. fruit phenologies). From these data, we used circular vector algebra to characterize seasonal peaks in fruit production (mean date, as an angle) and the length of fruiting seasons (as a circular standard deviation). Generalized linear models and circular correlations were used to assess whether latitudinal patterns in fruit phenologies could be explained by variation in temperature, precipitation and actual evapotranspiration (AET). Results Dates of peak fruit production and the length of fruiting seasons showed consistent differences with latitude. Annual peaks in fruit production occurred 1 to 3 months after the summer solstice at high-latitude sites in both hemispheres. Fruiting seasonality increased with latitude, indicating that fruiting seasons were longer in the tropics and shorter toward the poles. AET was the best climatic predictor of fruit phenologies. Annual peaks in fruit production were positively associated with annual peaks in AET and temperature, while fruiting seasons were shorter in areas with pronounced annual variation in AET. Main conclusions Global patterns in fruiting seasons are associated with global variation in climate. Across the globe, fleshy fruits are produced after annual periods of elevated water‐energy availability. Fruiting seasonality is also more pronounced in areas with strongly seasonal water‐energy inputs. Therefore, the timing of reproduction in fleshy fruited plant communities appears to be determined, at least in part, by spatial and temporal variation in energy supplies needed to subsidise plant reproduction.

Journal ArticleDOI
TL;DR: It is suggested that evolutionary history and dispersal limitation may be even more important in shaping the diversity-productivity relationship, and the common approach to examining empirical diversity-environmental relationships should start with the role of large-scale processes, followed by influences associated with ecological interactions.
Abstract: The relationship between biodiversity and habitat productivity has been a fundamental topic in ecology. Although the relationship between these parameters may exhibit different shapes, the unimodal shape has been frequently encountered. The decrease in diversity at high productivity has usually been attributed to competitive exclusion. We suggest that evolutionary history and dispersal limitation may be even more important in shaping the diversity-productivity relationship. On a global scale, unimodal diversity-productivity relationships dominate in temperate regions, whereas positive relationships are more common in the tropics. This difference can be accounted for by contrasting evolutionary history. Temperate regions have smaller species pools for productive habitats since these habitats have been scarce historically for speciation, while the opposite is true for the tropics. In addition, dispersal within a region may limit diversity either due to the lack of dispersal syndromes at low productivity or the low number of diaspores at high productivity. Thereafter, biotic interactions (competition and facilitation) can shape the relationship. All these processes can act independently or concurrently. We recommend that the common approach to examining empirical diversity-environmental relationships should start with the role of large-scale processes such as evolutionary history and dispersal limitation, followed by influences associated with ecological interactions.

Journal ArticleDOI
TL;DR: This study is the first demonstration of geographical variation in the responses of plant communities to aerial emissions: adverse effects increased from high to low latitudes, and this pattern was explained primarily by increases in both the diversity of original (undisturbed) communities and mean summer temperatures.
Abstract: Aim To investigate the general pattern of changes in species richness and diversity of vascular plants due to environmental contamination and associated habitat changes imposed by point polluters, and identify the sources of variation in the response of plant communities to industrial pollution. Location Global. Methods We collected species richness and diversity data from 86 studies that were conducted around 60 atmospheric point polluters worldwide and reported in 95 papers (published in 1953–2007). We used meta-analysis to search for a general effect and to compare between polluter types and plant groups, and linear regression to describe the latitudinal gradient and to quantify relationships between pollution and effect size. Results Although the species richness of vascular plants generally decreased with pollution, the effects were not uniform across the studies. Polluters that cause soil acidification imposed a stronger detrimental effect on plant diversity than industries whose emissions increased soil pH. An overall adverse effect was primarily due to the contribution of non-ferrous smelters and aluminium plants; the effects of other SO2-emitting industries were less detrimental, albeit negative, and the effects of chemical plants, fertilizer factories and cement industries did not differ from zero. Longevity of the pollution impact only made a slight contribution to the detected variation, while adverse effects increased with increase in pollution load. Main conclusions This study is the first demonstration of geographical variation in the responses of plant communities to aerial emissions: adverse effects increased from high to low latitudes, and this pattern was explained primarily by increases in both the diversity of original (undisturbed) communities and mean summer temperatures. The latter result suggests that under a future warmer climate the existing pollution loads may become more harmful. Model calculations indicate that a detectable depauperation of plant communities is unlikely if the polluter emits < 1500 t of SO2 annually.