scispace - formally typeset
Search or ask a question

Showing papers in "Hydrology and Earth System Sciences in 2001"


Journal ArticleDOI
TL;DR: This paper considers distributed hydrological models in hydrology as an expression of a pragmatic realism and focusses attention on the prior evaluation of models in terms of physical realism and on the value of data in model rejection.
Abstract: . This paper considers distributed hydrological models in hydrology as an expression of a pragmatic realism. Some of the problems of distributed modelling are discussed including the problem of nonlinearity, the problem of scale, the problem of equifinality, the problem of uniqueness and the problem of uncertainty. A structure for the application of distributed modelling is suggested based on an uncertain or fuzzy landscape space to model space mapping. This is suggested as the basis for an Alternative Blueprint for distributed modelling in the form of an application methodology. This Alternative Blueprint is scientific in that it allows for the formulation of testable hypotheses. It focuses attention on the prior evaluation of models in terms of physical realism and on the value of data in model rejection. Finally, some unresolved questions that distributed modelling must address in the future are outlined, together with a vision for distributed modelling as a means of learning about places.

575 citations


Journal ArticleDOI
TL;DR: This paper introduces an analytical framework to achieve this, and tools to use within it, based on a multi-objective approach to model calibration and analysis, and the utility of the framework is demonstrated with an example from the field of rainfall-runoff modelling.
Abstract: . Many existing hydrological modelling procedures do not make best use of available information, resulting in non-minimal uncertainties in model structure and parameters, and a lack of detailed information regarding model behaviour. A framework is required that balances the level of model complexity supported by the available data with the level of performance suitable for the desired application. Tools are needed that make optimal use of the information available in the data to identify model structure and parameters, and that allow a detailed analysis of model behaviour. This should result in appropriate levels of model complexity as a function of available data, hydrological system characteristics and modelling purpose. This paper introduces an analytical framework to achieve this, and tools to use within it, based on a multi-objective approach to model calibration and analysis. The utility of the framework is demonstrated with an example from the field of rainfall-runoff modelling. Keywords: hydrological modelling, multi-objective calibration, model complexity, parameter identifiability

536 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the state-of-the-art models for the generation of rainfall and other climate data is presented, including traditional time series models and more complex models which take account of the pseudo-cycles in the data.
Abstract: . The generation of rainfall and other climate data needs a range of models depending on the time and spatial scales involved. Most of the models used previously do not take into account year to year variations in the model parameters. Long periods of wet and dry years were observed in the past but were not taken into account. Recently, Thyer and Kuczera (1999) developed a hidden state Markov model to account for the wet and dry spells explicitly in annual rainfall. This review looks firstly at traditional time series models and then at the more complex models which take account of the pseudo-cycles in the data. Monthly rainfall data have been generated successfully by using the method of fragments. The main criticism of this approach is the repetitions of the same yearly pattern when only a limited number of years of historical data are available. This deficiency has been overcome by using synthetic fragments but this brings an additional problem of generating the right number of months with zero rainfall. Disaggregation schemes are effective in obtaining monthly data but the main problem is the large number of parameters to be estimated when dealing with many sites. Several simplifications have been proposed to overcome this problem. Models for generating daily rainfall are well developed. The transition probability matrix method preserves most of the characteristics of daily, monthly and annual characteristics and is shown to be the best performing model. The two-part model has been shown by many researchers to perform well across a range of climates at the daily level but has not been tested adequately at monthly or annual levels. A shortcoming of the existing models is the consistent underestimation of the variances of the simulated monthly and annual totals. As an alternative, conditioning model parameters on monthly amounts or perturbing the model parameters with the Southern Oscillation Index (SOI) result in better agreement between the variance of the simulated and observed annual rainfall and these approaches should be investigated further. As climate data are less variable than rainfall, but are correlated among themselves and with rainfall, multisite-type models have been used successfully to generate annual data. The monthly climate data can be obtained by disaggregating these annual data. On a daily time step at a site, climate data have been generated using a multisite type model conditional on the state of the present and previous days. The generation of daily climate data at a number of sites remains a challenging problem. If daily rainfall can be modelled successfully by a censored power of normal distribution then the model can be extended easily to generate daily climate data at several sites simultaneously. Most of the early work on the impacts of climate change used historical data adjusted for the climate change. In recent studies, stochastic daily weather generation models are used to compute climate data by adjusting the parameters appropriately for the future climates assumed.

329 citations


Journal ArticleDOI
TL;DR: The MAGIC model has proven to be robust, reliable and useful in a variety of scientific and managerial activities as discussed by the authors, which has been applied and tested extensively over a 15 year period at many sites and in many regions around the world.
Abstract: . The MAGIC model of the responses of catchments to acidic deposition has been applied and tested extensively over a 15 year period at many sites and in many regions around the world. Overall, the model has proven to be robust, reliable and useful in a variety of scientific and managerial activities. Over the years, several refinements and additions to MAGIC have been proposed and/or implemented for particular applications. These adjustments to the model structure have all been included in a new version of the model (MAGIC7). The log aluminium – pH relationship now does not have to be fixed to aluminium trihydroxide solubility. Buffering by organic acids using a triprotic analog is now included. Dynamics of nitrogen retention and loss in catchments can now be linked to soil nitrogen and carbon pools. Simulation of short-term episodic response by mixing fractions of different water types is also possible. This paper presents a review of the conceptual structure of MAGIC7 relating to long-term simulation of acidification and recovery, describes the conceptual basis of the new nitrogen dynamics and provides a comprehensive update of the equations, variables, parameters and inputs for the model. Keywords: process-based model, acid deposition, recovery

281 citations


Journal ArticleDOI
TL;DR: In this paper, water quality data for 56 long-term monitoring sites in eight European countries are used to assess freshwater responses to reductions in acid deposition at a large spatial scale, and a consistent analysis of trends from 1980 onwards, the majority of surface waters (38 of 56) showed significant (p ≤ 0.05) decreasing trends in pollution-derived sulphate.
Abstract: . Water quality data for 56 long-term monitoring sites in eight European countries are used to assess freshwater responses to reductions in acid deposition at a large spatial scale. In a consistent analysis of trends from 1980 onwards, the majority of surface waters (38 of 56) showed significant (p ≤0.05) decreasing trends in pollution-derived sulphate. Only two sites showed a significant increase. Nitrate, on the other hand, had a much weaker and more varied pattern, with no significant trend at 35 of 56 sites, decreases at some sites in Scandinavia and Central Europe, and increases at some sites in Italy and the UK. The general reduction in surface water acid anion concentrations has led to increases in acid neutralising capacity (significant at 27 of 56 sites) but has also been offset in part by decreases in base cations, particularly calcium (significant at 26 of 56 sites), indicating that much of the improvement in runoff quality to date has been the result of decreasing ionic strength. Increases in acid neutralising capacity have been accompanied by increases in pH and decreases in aluminium, although fewer trends were significant (pH 19 of 56, aluminium 13 of 53). Increases in pH appear to have been limited in some areas by rising concentrations of organic acids. Within a general trend towards recovery, some inter-regional variation is evident, with recovery strongest in the Czech Republic and Slovakia, moderate in Scandinavia and the United Kingdom, and apparently weakest in Germany. Keywords: acidification, recovery, European trends, sulphate, nitrate, acid neutralising capacity

280 citations


Journal ArticleDOI
TL;DR: In this article, the power law relationship between radar reflectivity factor Z(mm6m-3) and rain rate R(mm h-1 ) has been investigated in the context of weather radar measurements.
Abstract: . The conversion of the radar reflectivity factor Z(mm6m-3) to rain rate R(mm h-1 ) is a crucial step in the hydrological application of weather radar measurements. It has been common practice for over 50 years now to take for this conversion a simple power law relationship between Z and R. It is the purpose of this paper to explain that the fundamental reason for the existence of such power law relationships is the fact that Z and R are related to each other via the raindrop size distribution. To this end, the concept of the raindrop size distribution is first explained. Then, it is demonstrated that there exist two fundamentally different forms of the raindrop size distribution, one corresponding to raindrops present in a volume of air and another corresponding to those arriving at a surface. It is explained how Z and R are defined in terms of both these forms. Using the classical exponential raindrop size distribution as an example, it is demonstrated (1) that the definitions of Z and R naturally lead to power law Z–R relationships, and (2) how the coefficients of such relationships are related to the parameters of the raindrop size distribution. Numerous empirical Z–R relationships are analysed to demonstrate that there exist systematic differences in the coefficients of these relationships and the corresponding parameters of the (exponential) raindrop size distribution between different types of rainfall. Finally, six consistent Z–R relationships are derived, based upon different assumptions regarding the rain rate dependence of the parameters of the (exponential) raindrop size distribution. An appendix shows that these relationships are in fact special cases of a general Z–R relationship that follows from a recently proposed scaling framework for describing raindrop size distributions and their properties. Keywords: radar hydrology, raindrop size distribution, radar reflectivity–rain rate relationship

173 citations


Journal ArticleDOI
TL;DR: In this paper, long-term records of nitrogen in deposition and streamwater were analyzed at 30 sites covering major acid sensitive regions in Europe, and very few of the sites exhibit significant trends in nitrate concentrations; similar analyses on other datasets also show few significant trends.
Abstract: . Long-term records of nitrogen in deposition and streamwater were analysed at 30 sites covering major acid sensitive regions in Europe. Large regions of Europe have received high inputs of inorganic nitrogen for the past 20 - 30 years, with an approximate 20% decline in central and northern Europe during the late 1990s. Nitrate concentrations in streamwaters are related to the amount of N deposition. All sites with less than 10 kgN ha-1 yr-1 deposition have low concentrations of nitrate in streamwater, whereas all sites receiving > 25 kgN ha-1 yr-1 have elevated concentrations. Very few of the sites exhibit significant trends in nitrate concentrations; similar analyses on other datasets also show few significant trends. Nitrogen saturation is thus a process requiring many decades, at least at levels of N deposition typical for Europe. Declines in nitrate concentrations at a few sites may reflect recent declines in N deposition. The overall lack of significant trends in nitrate concentrations in streams in Europe may be the result of two opposing factors. Continued high deposition of nitrogen (above the 10 kgN ha-1 yr-1 threshold) should tend to increase N saturation and give increased nitrate concentrations in run-off, whereas the decline in N deposition over the past 5 – 10 years in large parts of Europe should give decreased nitrate concentrations in run-off. Short and long-term variations in climate affect nitrate concentrations in streamwater and, thus, contribute "noise" which masks long-term trends. Empirical data for geographic pattern and long-term trends in response of surface waters to changes in N deposition set the premises for predicting future contributions of nitrate to acidification of soils and surface waters. Quantification of processes governing nitrogen retention and loss in semi-natural terrestrial ecosystems is a scientific challenge of increasing importance. Keywords: Europe, acid deposition, nitrogen, saturation, recovery, water

169 citations


Journal ArticleDOI
TL;DR: In this article, a new technique based upon the use of block-Kriging and of Kalman filtering to combine, optimally in a Bayesian sense, areal precipitation fields estimated from meteorological radar to point measurements of precipitation such as are provided by a network of rain-gauges.
Abstract: . The paper introduces a new technique based upon the use of block-Kriging and of Kalman filtering to combine, optimally in a Bayesian sense, areal precipitation fields estimated from meteorological radar to point measurements of precipitation such as are provided by a network of rain-gauges. The theoretical development is followed by a numerical example, in which an error field with a large bias and a noise to signal ratio of 30% is added to a known random field, to demonstrate the potentiality of the proposed algorithm. The results analysed on a sample of 1000 realisations, show that the final estimates are totally unbiased and the noise variance reduced substantially. Moreover, a case study on the upper Reno river in Italy demonstrates the improvements in rainfall spatial distribution obtainable by means of the proposed radar conditioning technique. Keywords: Rainfall, meteorological radar, Bayesian technique, block-Kriging, Kalman filtering

161 citations


Journal ArticleDOI
TL;DR: In the Nordic countries, sulphur deposition has decreased by about 60% since the early 1980s as mentioned in this paper, with only a minor decrease in the late 1990s, which was most probably the result of climatic variations.
Abstract: . Sulphate deposition has decreased by about 60% in the Nordic countries since the early 1980s. Nitrogen deposition has been roughly constant during the past 20 years, with only a minor decrease in the late 1990s. The resulting changes in the chemistry of small lakes have been followed by national monitoring programmes initiated in the 1980s in Finland (163 lakes), Norway (100 lakes) and Sweden (81 lakes). These lakes are partly a subset from the survey of 5690 lakes in the Northern European lake survey of 1995. Trend analyses on data for the period 1990-1999 show that the non-marine sulphate concentrations in lakes have decreased significantly in 69% of the monitored lakes. Changes were largest in lakes with the highest mean concentrations. Nitrate concentrations, on the other hand, were generally low and showed no systematic changes. Concentrations of non-marine base cations decreased in 26% of the lakes, most probably an ionic-strength effect due to the lower concentrations of mobile strong-acid anions. Acid neutralising capacity increased in 32% of the lakes. Trends in recovery were in part masked by large year-to-year variations in sea-salt inputs and by increases in total organic carbon concentrations. These changes were most probably the result of climatic variations. Nordic lakes, therefore, show clear signs of recovery from acidification. Recovery began in the 1980s and accelerated in the 1990s. Reductions in sulphur deposition are the major "driving force" in the process of recovery from acidification. Further recovery can be expected in the next 10 years if the Gothenburg protocol on emissions of acidifying pollutants is implemented. Keywords: Nordic countries, sulphur deposition, lakes, recovery

152 citations


Journal ArticleDOI
TL;DR: In this article, the Strymon river discharge and water quality parameters were analyzed using statistical methods and the existence of trends and the evaluation of the best fitted models were performed and the relationships between concentration and loads of constituents both with the discharge were also examined.
Abstract: . Strymon is a transboundary river of Greece, Bulgaria and Former Yugoslav Republic of Macedonia (FYROM) in southeastern Europe. Water quality parameters and the discharge have been monitored each month just 10 km downstream of the river’s entry into Greece. The data of nine water quality variables (T, ECw, DO, SO42-, Na++K+, Mg2+ , Ca2+, NO3‾, TP) and the discharge for the period 1980-1997 were selected for this analysis. In this paper a) the time series of monthly values of water quality parameters and the discharge were analysed using statistical methods, b) the existence of trends and the evaluation of the best fitted models were performed and c) the relationships between concentration and loads of constituents both with the discharge were also examined. Boxplots for summarising the distribution of a data set were used. The ◈-test and the Kolmogorov-Smirnov test were used to select the theoretical distribution which best fitted the data. Simple regression was used to examine the concentration-discharge and the load-discharge relationships. According to the correlation coefficient (r) values the relation between concentrations and discharge is weak (r 0.902). Trends were detected using the nonparametric Spearman’s criterion upon the data for the variables: Q, ECw, DO, SO42-, Na++K+ and NO3‾ on which temporal trend analysis was performed. Keywords: Strymon river, water quality, discharge, concentration, load, statistics, trends

138 citations


Journal ArticleDOI
TL;DR: In this article, long-term trends in sulphate concentrations and fluxes in precipitation/throughfall and freshwaters of 20 European catchments were analysed to evaluate catchment response to decreasing sulphate deposition.
Abstract: Following the decline in sulphur deposition in Europe, sulphate dynamics of catchments and the reversibility of anthropogenic acidification of soils and freshwaters became of major interest Long-term trends in sulphate concentrations and fluxes in precipitation/throughfall and freshwaters of 20 European catchments were analysed to evaluate catchment response to decreasing sulphate deposition Sulphate deposition in the catchments studied declined by 38-82% during the last decade Sulphate concentrations in all freshwaters decreased significantly, but acidification reversal was clearly delayed in the German streams In Scandinavian streams and Czech/Slovakian lakes sulphate concentrations responded quickly to decreased input Sulphate fluxes in run-off showed no clear trend in Germany and Italy but decreased in Scandinavia, the Czech Republic and Slovakia The decrease, however, was less than the decline in input fluxes While long-term sulphate output fluxes from catchments were generally correlated to input fluxes, most catchments started a net release of sulphate during the early 1990s Release of stored sulphate leads to a delay of acidification reversal and can be caused by four major processes Desorption and excess mineralisation were regarded as the most important for the catchments investigated, while oxidation and weathering were of lesser importance for the long-term release of sulphate Input from weathering has to be considered for the Italian catchments Sulphate fluxes in German catchments, with deeply weathered soils and high soil storage capacity, responded more slowly to decreased deposition than catchments in Scandinavia and the Czech Republic/Slovakia, which have thin soils and relatively small sulphate storage For predictions of acidification reversal, soil characteristics, sulphur pools and their dynamics have to be evaluated in future research Keywords: acidification reversal, sulphur, sulphate release, Europe, catchments, deposition, lake, stream

Journal ArticleDOI
TL;DR: In this article, a temporal rainfall disaggregation model is applied to convert daily time series into an hourly resolution, which is based on the principles of random multiplicative cascade processes, and the performance of the model between two contrasting climates with different rainfall generating mechanisms, a semi-arid tropical (Brazil) and a temperate (United Kingdom) climate.
Abstract: . Rainfall data of high temporal resolution are required in a multitude of hydrological applications. In the present paper, a temporal rainfall disaggregation model is applied to convert daily time series into an hourly resolution. The model is based on the principles of random multiplicative cascade processes. Its parameters are dependent on (1) the volume and (2) the position in the rainfall sequence of the time interval with rainfall to be disaggregated. The aim is to compare parameters and performance of the model between two contrasting climates with different rainfall generating mechanisms, a semi-arid tropical (Brazil) and a temperate (United Kingdom) climate. In the range of time scales studied, the scale-invariant assumptions of the model are approximately equally well fulfilled for both climates. The model parameters differ distinctly between climates, reflecting the dominance of convective processes in the Brazilian rainfall and of advective processes associated with frontal passages in the British rainfall. In the British case, the parameters exhibit a slight seasonal variation consistent with the higher frequency of convection during summer. When applied for disaggregation, the model reproduces a range of hourly rainfall characteristics with a high accuracy in both climates. However, the overall model performance is somewhat better for the semi-arid tropical rainfall. In particular, extreme rainfall in the UK is overestimated whereas extreme rainfall in Brazil is well reproduced. Transferability of parameters in time is associated with larger uncertainty in the semi-arid climate due to its higher interannual variability and lower percentage of rainy intervals. For parameter transferability in space, no restrictions are found between the Brazilian stations whereas in the UK regional differences are more pronounced. The overall high accuracy of disaggregated data supports the potential usefulness of the model in hydrological applications. Keywords: Rainfall, temporal disaggregation, random cascade, scaling, semi-arid, temperate climate.

Journal ArticleDOI
TL;DR: The most influential indices for winter precipitation were the North Atlantic Oscillation and the East Atlantic/West Russian pattern; coherent oscillations were detected at about eight years between precipitation and the NorthAtlantic Oscillations and some dynamic consequences of the circulation on precipitation over the Iberian peninsula were examined during drought and wet spells as discussed by the authors.
Abstract: . Winter precipitation variability over the Iberian peninsula was investigated by obtaining the spatial and temporal patterns. Empirical Orthogonal Functions were used to describe the variance distribution and to compress the precipitation data into a few modes. The corresponding spatial patterns divide the peninsula into climatic regions according to precipitation variations. The associated time series were related to large scale circulation indices and tropical sea surface temperature anomalies by using lag cross-correlation and cross-spectrum. The major findings are: the most influential indices for winter precipitation were the North Atlantic Oscillation and the East Atlantic/West Russian pattern; coherent oscillations were detected at about eight years between precipitation and the North Atlantic Oscillation and some dynamic consequences of the circulation on precipitation over the Iberian peninsula were examined during drought and wet spells. In the end statistical methods have been proposed to downscale seasonal precipitation prediction. Keywords: Winter precipitation, circulation indices, Iberian peninsula climate, climate variations, precipitation trend

Journal ArticleDOI
TL;DR: A non-linear Auto-Regressive Exogenous-input model (NARXM) river flow forecasting output-updating procedure based on the structure of a multi-layer neural network performs better than the linear ARXM procedure.
Abstract: . A non-linear Auto-Regressive Exogenous-input model (NARXM) river flow forecasting output-updating procedure is presented. This updating procedure is based on the structure of a multi-layer neural network. The NARXM-neural network updating procedure is tested using the daily discharge forecasts of the soil moisture accounting and routing (SMAR) conceptual model operating on five catchments having different climatic conditions. The performance of the NARXM-neural network updating procedure is compared with that of the linear Auto-Regressive Exogenous-input (ARXM) model updating procedure, the latter being a generalisation of the widely used Auto-Regressive (AR) model forecast error updating procedure. The results of the comparison indicate that the NARXM procedure performs better than the ARXM procedure. Keywords: Auto-Regressive Exogenous-input model, neural network, output-updating procedure, soil moisture accounting and routing (SMAR) model

Journal ArticleDOI
TL;DR: A detailed trend analysis of 12 years of data (1988-2000) for 22 surface waters in acid-sensitive regions of the United Kingdom, in which individual site data have been combined to identify national-scale trends, has shown strong common patterns of temporal variation as mentioned in this paper.
Abstract: . A detailed trend analysis of 12 years of data (1988-2000) for 22 surface waters in acid-sensitive regions of the United Kingdom, in which individual site data have been combined to identify national-scale trends, has shown strong common patterns of temporal variation. Results suggest a widespread reduction in sulphate concentrations, hydrogen ion and inorganic aluminium species, and increases in acid neutralising capacity. Many chemical changes have not been linear. However, the first five years were characterised by high concentrations of marine ions and relatively stable pollutant sulphate concentrations and the remaining period by lower concentrations of marine ions and declining sulphate. Genuine "recovery", in terms of declining acidity in response to reduced anthropogenic sulphur deposition is only apparent, therefore, for the latter part of the monitoring period. Reductions in calcium concentrations appear to have partially offset the influence of sulphate reductions on acidity, as have increases in organic acidity associated with strong and widespread rising trends in dissolved organic carbon. Fluctuations in a number of climatic factors over the monitoring period have led to significant inter-annual variability in nitrate, which exhibits little long-term trend, marine ions and acidity, emphasising the need for long monitoring periods if underlying trends are to be correctly identified. Keywords: acidification, recovery, long-term trends, climate, Dissolved Organic Carbon, United Kingdom Acid Waters Monitoring Network

Journal ArticleDOI
TL;DR: In this article, major fluxes of sulphur and dissolved inorganic nitrogen were estimated in Central European mountain ecosystems of the Bohemian Forest (forest lakes) and Tatra Mountains (alpine lakes) over the industrial period.
Abstract: . Major fluxes of sulphur and dissolved inorganic nitrogen were estimated in Central European mountain ecosystems of the Bohemian Forest (forest lakes) and Tatra Mountains (alpine lakes) over the industrial period. Sulphur outputs from these ecosystems were comparable to inputs during a period of relatively stable atmospheric deposition (10-35 mmol m-2 yr-1) around the 1930s. Atmospheric inputs of sulphur increased by three- to four-fold between the 1950s and 1980s to ~140 and ~60 mmol mm-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively. Sulphur outputs were lower than inputs due to accumulation in soils, which was higher in forest soils than in the sparser alpine soils and represented 0.8-1.6 and 0.2-0.3 mol m-2, respectively, for the whole 1930-2000 period. In the 1990s, atmospheric inputs of sulphur decreased 80% and 50% in the Bohemian Forest and Tatra Mountains, respectively, and sulphur outputs exceeded inputs. Catchment soils became pronounced sources of sulphur with output fluxes averaging between 15 and 31 mmol m-2 yr-1. Higher sulphur accumulation in the forest soils has delayed (by several decades) recovery of forest lakes from acidification compared to alpine lakes. Estimated deposition of dissolved inorganic nitrogen was 53-75 mmol m-2 yr-1 in the Bohemian Forest and 35-45 mmol m-2 yr-1 in the Tatra Mountains in the 1880- 1950 period, i.e. below the empirically derived threshold of ~70 mmol m-2 yr-1, above which nitrogen leaching often occurs. Dissolved inorganic nitrogen was efficiently retained in the ecosystems and nitrate export was negligible (0-7 mmol m-2 yr-1). By the 1980s, nitrogen deposition increased to ~160 and ~80 mmol m-2 yr-1 in the Bohemian Forest and Tatra Mountains, respectively, and nitrogen output increased to 120 and 60 mmol m-2 yr-1. Moreover, assimilation of nitrogen in soils declined from ~40 to 10-20 mmol m-2 yr-1 in the alpine soils and even more in the Bohemian Forest, where one of the catchments has even become a net source of nitrogen. In the 1990s, nitrogen deposition decreased by ~30% and DIN output decreased to Keywords: emission, deposition, acidification, nitrogen-saturation, recovery, sulphate, nitrate, ammonium, mountain lakes

Journal ArticleDOI
TL;DR: In this article, a study of the behaviour of rainfall dynamics at different temporal scales identifies the type of approach most suitable for transformation of rainfall data from one scale to another, i.e. chaotic behavior.
Abstract: . This study of the behaviour of rainfall dynamics at different temporal scales identifies the type of approach most suitable for transformation of rainfall data from one scale to another. Rainfall data of four different temporal scales, i.e. daily, 2-day, 4-day and 8-day, observed over a period of about 25 years at the Leaf River basin, Mississippi, USA, are analysed. The correlation dimension method is employed to identify the behaviour of rainfall dynamics. The finite correlation dimensions obtained for the four rainfall series (4.82, 5.26, 6.42 and 8.87, respectively) indicate the possible existence of chaotic behaviour in the rainfall observed at the four scales. A possible implication of this might be that the rainfall processes at these scales are related through a chaotic (scale-invariant) behaviour. However, a comparison of the correlation dimension and coefficient of variation of each of the time series reveals an inverse relationship between the two (higher dimension for lower coefficient of variation and vice versa). The presence of a large number of zeros in the higher resolution time series (that could result in an underestimation of the dimension) and the possible presence of a higher level of noise in the lower resolution time series (that could result in an overestimation of the dimension) might account for such results. In view of these problems, it is concluded that the results must be verified using other chaos identification methods and the existence of chaos must be substantiated with additional evidence. Keywords: rainfall, chaos, scaling, correlation dimension, number of variables, coefficient of variation, data size, noise, zeros

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the status and trends of acidification reversal after two decades of reduced anthropogenic deposition in selected freshwaters of the low mountain ranges in the Harz, the Fichtelgebirge, the Bavarian Forest, the Spessart and the Black Forest.
Abstract: . The reversal of freshwater acidification in the low mountain ranges of Germany is of public, political and scientific concern, because these regions are near natural ecosystems and function as an important drinking water supply. The aim of this study was to evaluate the status and trends of acidification reversal after two decades of reduced anthropogenic deposition in selected freshwaters of the low mountain ranges in the Harz, the Fichtelgebirge, the Bavarian Forest, the Spessart and the Black Forest. In response to decreased sulphate deposition, seven out of nine streams investigated had significantly decreasing sulphate concentrations (all trends were calculated with the Seasonal Kendall Test). The decrease in sulphate concentration was only minor, however, due to the release of previously stored soil sulphur. No increase was found in pH and acid neutralising capacity (defined by Reuss and Johnson, 1986). Aluminum concentrations in the streams did not decrease. Thus, no major acidification reversal can currently be noted in spite of two decades of decreased acid deposition. Nevertheless, the first signs of improvement in water quality were detected as there was a decrease in the level and frequency of extreme values of pH, acid neutralising capacity and aluminium concentrations in streams. With respect to nitrogen, no change was determined for either nitrate or ammonium concentrations in precipitation or stream water. Base cation fluxes indicate increasing net loss of base cations from all ecosystems investigated, which could be interpreted as an increase in soil acidification. The latter was due to a combination of continued high anion leaching and significant reduction of base cation deposition. No major improvement was noted in biological recovery, however, initial signs of recovery were detectable as there was re-occurrence of some single macroinvertebrate species which were formerly extinct. The results of this study have important implications for water authorities, forest managers and policy makers: the delay in acidification reversal suggests a need for ongoing intensive amelioration of waters, a careful selection of management tools to guarantee sustainable management of forests and the reduction of nitrogen deposition to prevent further acidification of soils and waters. Keywords: freshwater, acidification reversal, drinking water supply, forested catchments, Germany

Journal ArticleDOI
TL;DR: In this paper, the authors investigated differences in vertical root distributions measured in four contrasting forest locations in the Netherlands were investigated using the soil hydrological model SWIF, and the results showed clear differences in optimal root distributions between the various sites and also between two model configurations.
Abstract: . In this modelling study differences in vertical root distributions measured in four contrasting forest locations in the Netherlands were investigated. Root distributions are seen as a reflection of the plant’s optimisation strategy, based on hydrological grounds. The "optimal" root distribution is defined as the one that maximises the water uptake from the root zone over a period of ten years. The optimal root distributions of four forest locations with completely different soil physical characteristics are calculated using the soil hydrological model SWIF. Two different model configurations for root interactions were tested: the standard model configuration in which one single root profile was used (SWIF-NC), and a model configuration in which two root profiles compete for the same available water (SWIF-C). The root profiles were parameterised with genetic algorithms. The fitness of a certain root profile was defined as the amount of water uptake over a simulation period of ten years. The root profiles of SWIF-C were optimised using an evolutionary game. The results showed clear differences in optimal root distributions between the various sites and also between the two model configurations. Optimisation with SWIF-C resulted in root profiles that were easier to interpret in terms of feasible biological strategies. Preferential water uptake in wetter soil regions was an important factor for interpretation of the simulated root distributions. As the optimised root profiles still showed differences with measured profiles, this analysis is presented, not as the final solution for explaining differences in root profiles of vegetation but as a first step using an optimisation theory to increase understanding of the root profiles of trees. Keywords: forest hydrology, optimisation, roots

Journal ArticleDOI
TL;DR: In this paper, the authors analysed long-term chemical data from a total of 37 streams and lochs in four selected regions of Scotland over three time periods (mostly 1978-2000), 1988-98 and 1995-2000) to match the deposition patterns.
Abstract: . Trends in major ionic components of bulk precipitation were analysed for two sites, Faskally and Loch Ard forest in Scotland, for the period 1972-2000. The pattern of change was not linear. Large reductions in sulphur deposition occurred in the early 1980s and, to a lesser extent, during 1995-2000, with a period of relative stability between 1988-95. pH increased significantly at both sites but nitrate and ammonia only increased significantly at Loch Ard forest. Long-term chemical data from a total of 37 streams and lochs in four selected regions of Scotland were analysed over three time periods (all available data (mostly 1978-2000), 1988-98 and 1995-2000) to match the deposition patterns. For the whole study period a significant decline in non-marine sulphate was found at all sites while the most consistent increases in pH and alkalinity were recorded at all the high elevation loch sites in the Galloway area. Significant reductions in toxic forms of aluminium were also recorded, mostly at sites where pH had increased. Nitrate trends were equivocal except for catchments with clear-felling operations. For these sites, negative trends were found where felling occurred in the 1980s, while positive trends were found at sites with felling in the 1990s. With the exception of one site, dissolved organic carbon concentrations increased significantly with moorland sites showing smaller increases than forested sites. Associated with this change was a significant increase in complexed forms of aluminium. Trends for the 1988-98 period were much smaller than those for the whole study period and in many cases were insignificant. This contrasts with the 1995-2000 period when large and significant reductions in sulphate and nitrate were recorded along with increases in marine salts, probably as a result of climatically related events. Qualitative, experimental and monitoring data from lochs in the Galloway area revealed evidence of recovery of fish populations. Interpretation of chemical and biological trends was clearly influenced by the choice of the time series, especially in relation to deposition and climatic changes. Nevertheless, all the fresh waters included in this study are currently in the best ecological condition since the 1970s in the context of recovery from acidification. Keywords: deposition, trends, acidification, forestry, recovery, fish, climate

Journal ArticleDOI
TL;DR: In this paper, a pre-and post-harvest comparison of stream temperatures collected in five neighbouring streams (sub-catchments) over a period of five years (1994-1998) is presented.
Abstract: . This paper presents a pre- and post-harvest comparison of stream temperatures collected in five neighbouring streams (sub-catchments) over a period of five years (1994-1998). The aim of the study was to determine whether land cover changes from clear cutting in areas outside forest buffer zones (applied to streams >0.5 m wide) might contribute to an increase in summer mean stream temperatures in buffered streams downslope by infusion of warmed surface and sub-surface water into the streams. Specific relationships were observed in all five forest streams investigated. To assist in the analysis, several spatially-relevant variables, such as land cover change, mid-summer potential solar radiation, flow accumulation, stream location and slope of the land were determined, in part, from existing aerial photographs, GIS-archived forest inventory data and a digital terrain model of the study area. Spatial calculations of insolation levels for July 15th were used as an index of mid-summer solar heating across sub-catchments. Analysis indicated that prior to the 1995 harvest, differences in stream temperature could be attributed to (i) topographic position and catchment-to-sun orientation, (ii) the level of cutting that occurred in the upper catchment prior to the start of the study, and (iii) the average slope within harvested areas. Compared to the pre-harvest mean stream temperatures in 1994, mean temperatures in the three streams downslope from the 1995 harvest areas increased by 0.3 to 0.7°C (representing a 4-8% increase; p-value of normalised temperatures Keywords: terrain attributes, solar radiation, land cover, forest buffers, New Brunswick regulations, spatial modelling, DEM, forest covertypes

Journal ArticleDOI
TL;DR: In this paper, long term changes in the water quality of rainfall, cloud water and stream waters draining acidic and acid sensitive moorland and forested catchments at Plynlimon, mid-Wales, are examined for the period 1983 to 2001.
Abstract: . Long term changes in the water quality of rainfall, cloud water and stream waters draining acidic and acid sensitive moorland and forested catchments at Plynlimon, mid-Wales, are examined for the period 1983 to 2001. Atmospheric inputs of chloride and sulphate are influenced by the relative inputs of clean maritime and polluted land based air masses. There is no systematic increase or decrease over time for chloride and non-sea-salt sulphate. Rather, there is a decadal scale process possibly representative of the influence of the North Atlantic Oscillation that affects the maritime and pollution climate of the Atlantic seaboard of the UK. Over 17 years of study, there may be a small decrease in non-sea-salt sulphate of about 10 μeq l-1 and a small improvement in acid neutralising capacity of about 20 to 30 μeq l-1 in rainfall. There is a clear improvement in cloud water chemistry with respect to pollutant components (ammonium, nitrate, non-sea-salt sulphate) and acidity (acid neutralising capacity improved by about 300 μeq l-1) through the study period. Many of the changes in cloud water chemistry are similar to rainfall over the same period except the magnitude of change is larger for the cloud water. Within the streams, there is some evidence for reductions in acidity as reflected by acid neutralising capacity becoming less negative. For one stream, deforestation occurred during the sampling period and this led to large increases in nitrate and smaller increases in aluminium midway through the study period. However, the climate and hydrological variability largely masked out other changes. The current analysis provides only a start to identifying trends for such a complex and variable environmental system. The need for strong statistical tools is emphasised to resolve issues of: (a) hydrological induced water quality variability, (b) changing soil and groundwater "endmember" chemistry contribution to the stream and (c) the non-linear patterns of change. Nonetheless, the analysis is enhanced by examining trends in chemistry for yearly averages and yearly average low catch and high catch rainfall and cloud water events as well as low and high flow stream chemistry. This approach allows trends to be examined within the context of endmember mixing. Keywords: Calcium, aluminium, ammonium, pH, Gran alkalinity, ANC, nitrate, chloride, sulphate, Plynlimon, cloud, mist, rainfall, stream, acidification, North Atlantic Oscillation, trends

Journal ArticleDOI
TL;DR: In this paper, trend analysis was performed on long-term (15-30 years) series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes.
Abstract: . The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years) series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium) which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

Journal ArticleDOI
TL;DR: HAL as mentioned in this paper is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not, which may come from teaching and research institutions in France or abroad, or from public or private research centers.
Abstract: HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Stochastic rainfall interpolation and downscaling L. G. Lanza, J. A. Ramírez, E. Todini

Journal ArticleDOI
TL;DR: In this paper, the authors used a geophysical modeling approach to estimate that only 27% of the modern ocean will be subducted in one billion years and that the drying up of surface reservoirs in the future will be due to the increase in temperature caused by a maturing Sun connected to hydrogen escape to outer space.
Abstract: . Questions of how water arrived on the Earth’s surface, how much water is contained in the Earth system as a whole, and how much water will be available in the future in the surface reservoirs are of central importance to our understanding of the Earth. To answer the question about the fate of the Earth’s ocean, one has to study the global water cycle under conditions of internal and external forcing processes. Modern estimates suggest that the transport of water to the surface is five times smaller than water movement to the mantle, so that the Earth will lose all its sea-water in one billion years from now. This straightforward extrapolation of subduction-zone fluxes into the future seems doubtful. Using a geophysical modelling approach it was found that only 27% of the modern ocean will be subducted in one billion years. Internal feedbacks will not be the cause of the ocean drying out. Instead, the drying up of surface reservoirs in the future will be due to the increase in temperature caused by a maturing Sun connected to hydrogen escape to outer space. Keywords: Surface water reservoir, water fluxes, regassing, degassing, global water cycle

Journal ArticleDOI
TL;DR: The RAIN and CLIMEX experiments at Risdalsheia, southernmost Norway, together cover 17 years (1984-2000) of whole-catchment manipulation of acid deposition and climate as discussed by the authors.
Abstract: . The RAIN and CLIMEX experiments at Risdalsheia, southernmost Norway, together cover 17 years (1984-2000) of whole-catchment manipulation of acid deposition and climate. A 1200 m2 roof placed over the forest canopy at KIM catchment excluded about 80% of ambient acid deposition; clean rain was sprinkled under the roof. A climate change treatment (3.7°C increase in air temperature and increase in air carbon dioxide concentrations to 560 ppmv) was superimposed on the clean rain treatment for four years (1995-1998). Sea-salt inputs and temperature are climate-related factors that influence water chemistry and can confound long-term trends caused by changes in deposition of sulphur and nitrogen. The RAIN and CLIMEX experiments at Risdalsheia provided direct experimental data that allow quantitative assessment of these factors. Run-off chemistry responded rapidly to the decreased acid deposition. Sulphate concentrations decreased by 50% within three years; nitrate and ammonium concentrations decreased to new steady-state levels within the first year. Acid neutralising capacity increased and hydrogen ion and inorganic aluminium decreased. Similar recovery from acidification was also observed at the reference catchment, ROLF, in response to the general 50% reduction in sulphate deposition over southern Norway in the late 1980s and 1990s. Variations in sea-salt deposition caused large variations in run-off chemistry at the reference catchment ROLF and the year-to-year noise in acid neutralising capacity was as large as the overall trend over the period. These variations were absent at KIM catchment because the sea-salt inputs were held constant over the entire 17 years of the clean rain treatment. The climate change experiment at KIM catchment resulted in increased leaching of inorganic nitrogen, probably due to increased mineralisation and nitrification rates in the soils. Keywords: acid deposition, global change, water, soil, catchment, experiment, Norway.

Journal ArticleDOI
TL;DR: In this article, the European Commission Research Directorate General, Environment and Sustainable Development Programme, Unit I-3, B-1049 Bruxelles, Belgium has proposed an approach for water management for sustainable development.
Abstract: 1 Macaulay Institute, Aberdeen, Scotland AB15 8QH, UK 2 Centre for Ecology and Hydrology, Wallingford, Oxon OX10 8BB, UK 3 Norwegian Institute for Water Research, PO Box 173, Kjelsås, N-0411Oslo, Norway 4 International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria 5 European Commission Research Directorate General, Environment and Sustainable Development Programme, Unit I-3, B-1049 Bruxelles, Belgium

Journal ArticleDOI
TL;DR: In this article, the authors developed linear regression models based on singular value decomposition (SVD) with the aim of downscaling atmospheric variables statistically to estimate average rainfall in the Chikugo River Basin, Kyushu Island, southern Japan, on a 12-hour basis.
Abstract: . The present paper develops linear regression models based on singular value decomposition (SVD) with the aim of downscaling atmospheric variables statistically to estimate average rainfall in the Chikugo River Basin, Kyushu Island, southern Japan, on a 12-hour basis. Models were designed to take only significantly correlated areas into account in the downscaling procedure. By using particularly precipitable water in combination with wind speeds at 850 hPa, correlation coefficients between observed and estimated precipitation exceeding 0.8 were reached. The correlations exhibited a seasonal variation with higher values during autumn and winter than during spring and summer. The SVD analysis preceding the model development highlighted three important features of the rainfall regime in southern Japan: (1) the so-called Bai-u front which is responsible for the majority of summer rainfall, (2) the strong circulation pattern associated with autumn rainfall, and (3) the strong influence of orographic lifting creating a pronounced east-west gradient across Kyushu Island. Results confirm the feasibility of establishing meaningful statistical relationships between atmospheric state and basin rainfall even at time scales of less than one day. Keywords: atmospheric downscaling, precipitation, rainfall, singular value decomposition, southern Japan

Journal ArticleDOI
TL;DR: In this paper, the chemical composition and invertebrate communities found in four streams in the Cairngorms, Scotland, were monitored between 1985-1997, and strong seasonality in water chemistry occurred, with the most acid, low alkalinity waters observed during the winter and early spring.
Abstract: . The chemical composition and invertebrate communities found in four streams in the Cairngorms, Scotland, were monitored between 1985-1997. Stream waters were mildly acidic (mean pH ca. 6.5), with low alkalinity (mean acid neutralising capacity varying from 35-117 meq l-1) and low ionic strength. Subtle differences in the chemistry of each stream were reflected in their invertebrate faunas. Strong seasonality in water chemistry occurred, with the most acid, low alkalinity waters observed during the winter and early spring. This was particularly marked during snowmelt between January and April. In contrast, summer flows were usually groundwater dominated and characterised by higher alkalinity and higher concentrations of most other weathering-derived solutes. Seasonality was also clear in the invertebrate data, with Canonical Correspondence Analysis (CCA) separating seasonal samples along axes related to water temperature and discharge characteristics. Inter-annual hydrological and chemical differences were marked, particularly with respect to the winter period. Invertebrate communities found in each of the streams also varied from year to year, with spring communities significantly more variable (P Hydrochemical trends over the study period were analysed using a seasonal Kendall test, LOcally WEighted Scatterplot Smoothing (LOWESS) and graphical techniques. These indicated that a reduction in sulphate concentrations in stream water is occurring, consistent with declining levels of atmospheric deposition. This may be matched by increases in pH and declining calcium concentrations, though available evidence is inconclusive. Other parameters, such as chloride, total organic carbon and zinc, reveal somewhat random patterns, probably reflecting irregular variations in climatic factors and/or atmospheric deposition. Previous studies have shown that the stream invertebrate communities have remained stable over this period (i.e. no significant linear trends) and show no evidence of acid-related impoverishment. Thus, over longer timescales invertebrates in these streams appear robust to the short-term (seasonal and inter-annual) environmental variability and long-term (decadal) chemical changes identified. Keywords: hydrochemistry, hydrology, trends, macroinvertebrates, uplands, Cairngorms, acidification

Journal ArticleDOI
TL;DR: The string of beads model as discussed by the authors is a space-time model of rainfields measured by weather radar, which is driven by two auto-regressive time series models, one at the image scale, the other at the pixel scale, to model the temporal correlation structure of the wet-period process.
Abstract: . The String of Beads model is a space-time model of rainfields measured by weather radar. It is here driven by two auto-regressive time series models, one at the image scale, the other at the pixel scale, to model the temporal correlation structure of the wet-period process. The marginal distribution of the pixel scale intensities on a given radar-rainfall image is described by a log-normal distribution. The spatial dependence structure of each image is defined by a power spectrum approximated by a power law function with a negative exponent. It is demonstrated that this stochastic modelling approach is valid because the images sampled are effectively stationary above a scale of 30 km, which is less than a quarter of the image width. By advecting a simulated sequence of images along the same cumulative advection vector as the observed event and matching the image-scale statistics of each simulated image with those of the corresponding observed image, a simulated sequence of plausible images is generated which mimics (has the same space-time statistics as) the observed event but differs from it in detail. Aggregating the pixel scale intensities in each sequence over a number of time and space intervals and then comparing their spatial and temporal statistics, demonstrates that the model captures the intermediate scale behaviour well, showing satisfactorily its ability to downscale rainfall in space and time. The model thus has potential as an operational space-time model of rainfields. Keywords: Space-time, rainfield modelling, weather radar, multifractals, Gaussian random fields