scispace - formally typeset
Search or ask a question

Showing papers in "Immunology and Cell Biology in 2019"


Journal ArticleDOI
TL;DR: The main players in wound‐healing macrophage activation and function are summarized, including cytokines, apoptotic cells, nucleotides and mechanical stimuli, and recent technologies such as cell tracking and single‐cell RNA‐seq are described, which have uncovered remarkable plasticity and heterogeneity in blood‐derived or tissue‐resident macrophages.
Abstract: Macrophages are critically involved in wound healing, from dampening inflammation to clearing cell debris and coordinating tissue repair. Within the wound, the complexity of macrophage function is increasingly recognized, with adverse outcomes when macrophages are inappropriately activated, such as in fibrosis or chronic non-healing wounds. Recent advances in in vivo and translational wound models, macrophage-specific deletions and new technologies to distinguish macrophage subsets, have uncovered the vast spectrum of macrophage activation and effector functions. Here, we summarize the main players in wound-healing macrophage activation and function, including cytokines, apoptotic cells, nucleotides and mechanical stimuli. We highlight recent studies demonstrating cooperation between these factors for optimal wound healing. Next, we describe recent technologies such as cell tracking and single-cell RNA-seq, which have uncovered remarkable plasticity and heterogeneity in blood-derived or tissue-resident macrophages and discuss the implications for wound healing. Lastly, we evaluate macrophage dysfunction in aberrant wound healing that occurs in aging, diabetes and fibrosis. A better understanding of the longevity and plasticity of wound-healing macrophages, and identification of unique macrophage subsets or specific effector molecules in wound healing, would shed light on the therapeutic potential of manipulating macrophage function for optimal wound healing.

227 citations


Journal ArticleDOI
TL;DR: Progress in the study of molecular, cellular and clinical aspects of MSMD since the last comprehensive review published in 2014 is reviewed, highlighting the discoveries of a new genetic etiology, autosomal recessive signal peptide peptidase‐like 2 A deficiency and two forms of syndromic MSMD.
Abstract: Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of IFN-γ immunity. Since 1996, disease-causing mutations have been found in 11 genes, which, through allelic heterogeneity, underlie 21 different genetic disorders. We briefly review here progress in the study of molecular, cellular and clinical aspects of MSMD since the last comprehensive review published in 2014. Highlights include the discoveries of (1) a new genetic etiology, autosomal recessive signal peptide peptidase-like 2 A deficiency, (2) TYK2-deficient patients with a clinical phenotype of MSMD, (3) an allelic form of partial recessive IFN-γR2 deficiency, and (4) two forms of syndromic MSMD: RORγ/RORγT and JAK1 deficiencies. These recent findings illustrate how genetic and immunological studies of MSMD can shed a unique light onto the mechanisms of protective immunity to mycobacteria in humans.

145 citations


Journal ArticleDOI
TL;DR: The challenges faced by chimeric antigen receptor (CAR) T cell therapy in the generation of persistence and memory for CAR T cells are outlined, and recent strategies to improve CAR T cell persistence are summarized, with a focus on memory cell formation.
Abstract: It is now becoming clear that less differentiated naive and memory T cells are superior to effector T cells in the transfer of immunity for adoptive cell therapy. This review will outline the challenges faced by chimeric antigen receptor (CAR) T cell therapy in the generation of persistence and memory for CAR T cells, and summarize recent strategies to improve CAR T cell persistence, with a focus on memory cell formation. The relevance of enhancing persistence in more differentiated effector T cells is also covered, because genetic and pharmacological interventions may prolong effector T cell activity and lifespan, thereby improving anti-cancer activity. In particular, it may be possible to enforce epigenetic changes in differentiated T cells to enhance memory CAR T cell formation. Optimizing the generation of self-renewing T cell populations (e.g. memory cells), while maintaining differentiated effector T cells through epigenome modification, will help overcome barriers to T cell expansion and survival, thereby improving clinical outcomes in CAR T cell therapy.

126 citations


Journal ArticleDOI
TL;DR: How environmental cues alter the plasticity and function of lung airway macrophages is highlighted and contributes to pathological remodeling in acute and chronic infections and diseases such as asthma, idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease.
Abstract: The lungs present a challenging immunological dilemma for the host. Anatomically positioned at the environmental interface, they are constantly exposed to antigens, pollutants and microbes, while simultaneously facilitating vital gas exchange. Remarkably, the lungs maintain a functionally healthy state, ignoring harmless inhaled proteins, adapting to toxic environmental insults and limiting immune responses to allergens and pathogenic microbes. This functional strategy of environmental adaptation maintains immune defense, reduces tissue damage, and promotes and sustains lung immune tolerance. At steady state, airway macrophages produce low levels of cytokines, and suppress the induction of innate and adaptive immunity. These cells are primary initiators of lung innate immunity and possess high phagocytic activity to clear particulate antigens and apoptotic cell debris from the airways to regulate the response to infection and inflammation. In response to epithelial injury, resident and recruited macrophages drive tissue repair. In this review, we will focus on the functional importance of macrophages in tissue homeostasis and inflammation in the lung and highlight how environmental cues alter the plasticity and function of lung airway macrophages. We will also discuss mechanisms employed by pulmonary macrophages to promote resolution of tissue inflammation, and how and when this balance is perturbed, they contribute to pathological remodeling in acute and chronic infections and diseases such as asthma, idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease.

89 citations


Journal ArticleDOI
TL;DR: A number of phenotypically distinct immunodeficiency disorders can mimic hyper IgE syndromes, adding to the diagnostic challenge.
Abstract: Hyper IgE syndromes comprise a group of rare primary immunodeficiency disorders characterized by a triad of atopic dermatitis, recurrent skin and lung infections along with elevated IgE levels. Job syndrome or autosomal dominant hyper IgE syndrome because of heterozygous loss-of-function mutations with dominant negative effect in signal transducer and activator of transcription-3 is the prototype of these disorders. However, several other genetically characterized immunodeficiency disorders have been identified over the past decade and joined the umbrella of hyper IgE syndromes including autosomal recessive mutations in the DOCK8, ZNF431 and PGM3 genes and heterozygous mutations with dominant negative effect in the CARD11 gene. Moreover, a number of phenotypically distinct immunodeficiency disorders can mimic hyper IgE syndromes, adding to the diagnostic challenge. Herein, we will concisely review these disorders, their molecular bases, highlighting key distinguishing clinical and laboratory findings and therapeutic options.

80 citations


Journal ArticleDOI
TL;DR: This review examines the individual components of the immune response to stroke, highlighting the most promising future stroke immunotherapies.
Abstract: Stroke is a major cause of morbidity and mortality worldwide. Despite the intensive search for new therapies, hundreds of agents targeting various pathophysiological mechanisms have failed clinical trials, and the thrombolytic agent tissue plasminogen activator is currently the only FDA-approved medication for the treatment of acute ischemic stroke. The immune system is involved in all stages of stroke, from the pathogenesis of risk factors to neurotoxicity, to tissue remodeling and repair. There is a bidirectional interaction between the brain and the immune system, with stroke-induced immunosuppression and subsequent infection a principal source of patient mortality. Newer work also points to a role for the gut microbiota in the immune response to stroke, while clinical sequelae such as dementia might now also be explained in immune terms. However, the exact roles of innate and adaptive components have not been fully elucidated, with studies reporting both detrimental and beneficial functions. Time is a key determinant in defining whether immunity and inflammation are neuroprotective or neurotoxic. The local inflammatory milieu also has a clear influence on many proposed treatments. This review examines the individual components of the immune response to stroke, highlighting the most promising future stroke immunotherapies.

74 citations


Journal ArticleDOI
TL;DR: It is shown that deletion of Trim25 does not affect the IFN response to either influenza A virus, influenza B virus, Sendai virus or several RIG‐I agonists, and critical evidence is provided that Riplet, and not TRIM25, is required endogenously for the ubiquitination of Rig‐I.
Abstract: The innate immune system is our first line of defense against viral pathogens. Host cell pattern recognition receptors sense viral components and initiate immune signaling cascades that result in the production of an array of cytokines to combat infection. Retinoic acid-inducible gene-I (RIG-I) is a pattern recognition receptor that recognizes viral RNA and, when activated, results in the production of type I and III interferons (IFNs) and the upregulation of IFN-stimulated genes. Ubiquitination of RIG-I by the E3 ligases tripartite motif-containing 25 (TRIM25) and Riplet is thought to be requisite for RIG-I activation; however, recent studies have questioned the relative importance of these two enzymes for RIG-I signaling. In this study, we show that deletion of Trim25 does not affect the IFN response to either influenza A virus (IAV), influenza B virus, Sendai virus or several RIG-I agonists. This is in contrast to deletion of either Rig-i or Riplet, which completely abrogated RIG-I-dependent IFN responses. This was consistent in both mouse and human cell lines, as well as in normal human bronchial cells. With most of the current TRIM25 literature based on exogenous expression, these findings provide critical evidence that Riplet, and not TRIM25, is required endogenously for the ubiquitination of RIG-I. Despite this, loss of TRIM25 results in greater susceptibility to IAV infection in vivo, suggesting that it may have an alternative role in host antiviral defense. This study refines our understanding of RIG-I signaling in viral infections and will inform future studies in the field.

69 citations


Journal ArticleDOI
TL;DR: The data suggest that MAIT cells have a more complicated role in CRC than currently realized and that they represent a promising new target for immunotherapies where IL‐13 can be a critical factor.
Abstract: Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize antigens derived from riboflavin biosynthesis. In addition to anti-microbial functions, human MAIT cells are associated with cancers, autoimmunity, allergies and inflammatory disorders, although their role is poorly understood. Activated MAIT cells are well known for their rapid release of Th1 and Th17 cytokines, but we have discovered that chronic stimulation can also lead to potent interleukin (IL)-13 expression. We used RNA-seq and qRT-PCR to demonstrate high expression of the IL-13 gene in chronically stimulated MAIT cells, and directly identify IL-13 using intracellular flow cytometry and multiplex bead analysis of MAIT cell cultures. This unexpected finding has important implications for IL-13-dependent diseases, such as colorectal cancer (CRC), that occur in mucosal areas where MAIT cells are abundant. We identify MAIT cells near CRC tumors and show that these areas and precancerous polyps express high levels of the IL-13 receptor, which promotes tumor progression and metastasis. Our data suggest that MAIT cells have a more complicated role in CRC than currently realized and that they represent a promising new target for immunotherapies where IL-13 can be a critical factor.

44 citations


Journal ArticleDOI
TL;DR: The mechanism of efferocytosis is described and its association with the development of autoimmune diseases, airway inflammation, atherosclerosis and cancer is evaluated to open a new window for the treatment of these diseases.
Abstract: During the life of a human being, several tons of apoptotic cells and debris are produced These apoptotic particles should be cleared quickly and accurately from the body, as they may lose their membrane integrity with the probability of leakage of cytotoxic materials and other intracellular antigens into the environment The action of removing apoptotic particles occurs by a process called efferocytosis Efferocytosis is a highly regulated balance among a set of find-me, eat-me and don't-eat-me signals Efferocytosis is accompanied by a suppression of the immune system that can explain its negative role in cancer Additionally, defects in this process can lead to different diseases In this review, we aim to describe the mechanism of efferocytosis and evaluate its association with the development of autoimmune diseases, airway inflammation, atherosclerosis and cancer to open a new window for the treatment of these diseases

43 citations


Journal ArticleDOI
TL;DR: This review explores how metabolic pathways and substrate choice can influence the phenotype and function of memory T cells.
Abstract: The development and persistence of memory T cells are integral to effective host defenses. Cell metabolism has a central role in the maintenance of these populations and engagement of specific metabolic pathways can influence T-cell fate. Nuances in memory T-cell metabolism are both context dependent, and exist, on a spectrum that complements and supports the activity of specific memory T-cell subsets. This review explores how metabolic pathways and substrate choice can influence the phenotype and function of memory T cells.

42 citations


Journal ArticleDOI
Shuang Cao1, Guohua Wang, Jia Wang, Cheng Li, Le Zhang 
TL;DR: Both the in vitro and in vivo studies revealed that hsa_circ_101280 largely facilitated the tumorigenesis of HCC, characterized by the promoted proliferation and suppressed apoptosis of H CC cells, by sponging miR‐375 and upregulating JAK2.
Abstract: In this study, we sought to predict the effects of a certain circular RNA (circRNA), hsa_circ_101280 (also known as hsa_circ_0100929 and hsa_circ_SLAIN1), on hepatocellular carcinoma (HCC) cells and to determine the potential mechanism. After screening differentially expressed circRNAs in HCC tissues through Gene Expression Omnibus data analysis, hsa_circ_101280 was found to be highly expressed, and its high expression was verified in HCC cell lines with qRT-PCR along with the low expression of its downstream miRNA miR-375. Colony formation and flow cytometry assays showed that both hsa_circ_101280 silencing and miR-375 overexpression restrained proliferation and promoted apoptosis in HCC cells. JAK2 was identified as a downstream mRNA target of miR-375 by RNA pull-down and dual-luciferase reporter gene assays, its expression in HCC cell lines were positively regulated by hsa_circ_101280 and negatively by miR-375 expression. Furthermore, the silencing of hsa_circ_101280 significantly inhibited the growth of HCC xenografts in nude mice, with the downregulated expression of JAK2. Overall, both the in vitro and in vivo studies revealed that hsa_circ_101280 largely facilitated the tumorigenesis of HCC, characterized by the promoted proliferation and suppressed apoptosis of HCC cells, by sponging miR-375 and upregulating JAK2.

Journal ArticleDOI
TL;DR: Overall, the data have identified a novel mechanism in which R132H mutation of the IDH1 gene serves as a tumor suppressor by promoting the recruitment of NK cells through CX3CL1/CX3CR1 chemotaxis.
Abstract: Mutations in the isocitrate dehydrogenase (IDH) 1 gene, especially the R132H mutation, have been reported to be associated with a better prognosis in glioma patients. However, the underlying molecular mechanisms are not yet well understood. Many factors may contribute to differences in the survival of IDH1 wild-type and IDH1 mutant glioma patients, in which immune components play a potentially important role. In this study, we analyzed The Cancer Genome Atlas (TCGA), and the Chinese Glioma Genome Atlas (CGGA) databases, as well as glioma patient-derived tumor samples. We found that there was a higher infiltration of natural killer (NK) cells in IDH1 mutant glioma patients, and this was correlated with a better prognosis. We also showed that IDH1-R132 tumor cells had higher expression levels of the chemokine CX3CL1. This arises as a result of the conversion of α-ketoglutarate to R(-)-2-hydroxyglutarate by the IDH1 mutant and the resultant phosphorylation of nuclear factor kappa B. Knockdown of CX3CL1 decreased the migration of NK cells. In addition, the high levels of expression of CX3CL1 were positively correlated with glioma patient survival in the TCGA and CGGA databases, and in the clinical samples. Overall, our data have identified a novel mechanism in which R132H mutation of the IDH1 gene serves as a tumor suppressor by promoting the recruitment of NK cells through CX3CL1/CX3CR1 chemotaxis.

Journal ArticleDOI
TL;DR: The role of the microbiota in the induction of immune memory with a focus on both adaptive and innate memory as well as vaccine efficacy is highlighted.
Abstract: The microbiota plays an important role in regulating both the innate and adaptive immune systems. Many studies have focused on the ability of microbes to shape the immune system by stimulating B-cell and antibody responses and the differentiation of T helper cell function. However, an important feature of the immune system is its ability to generate memory responses, which provide increased survival for the host. This review will highlight the role of the microbiota in the induction of immune memory with a focus on both adaptive and innate memory as well as vaccine efficacy.

Journal ArticleDOI
TL;DR: It is shown that bone marrow‐derived mast cells produce IL‐13, IL‐6, TNF, GM‐CSF, CCL3 and CCL4 in response to IL‐33 stimulation, and inhibition of the p38 MAPK, or inhibition or knockout of its downstream kinases MK2 and MK3, blocked the production of these cytokines.
Abstract: IL-33 is an IL-1-related cytokine that can act as an alarmin when released from necrotic cells. Once released, it can target various immune cells including mast cells, innate lymphoid cells and T cells to elicit a Th2-like immune response. We show here that bone marrow-derived mast cells produce IL-13, IL-6, TNF, GM-CSF, CCL3 and CCL4 in response to IL-33 stimulation. Inhibition of the p38 MAPK, or inhibition or knockout of its downstream kinases MK2 and MK3, blocked the production of these cytokines in response to IL-33. The mechanism downstream of MK2/3 was cytokine specific; however, MK2 and MK3 were able to regulate TNF and GM-CSF mRNA stability. Previous studies in macrophages have shown that MK2 regulates mRNA stability via phosphorylation of the RNA-binding protein TTP (Zfp36). The regulation of cytokine production in mast cells was, however, independent of TTP. MK2/3 were able to phosphorylate the TTP-related protein Brf1 (Zfp36 l1) in IL-33-stimulated mast cells, suggesting a mechanism by which MK2/3 might control mRNA stability in these cells. In line with its ability to regulate in vitro IL-33-stimulated cytokine production, double knockout of MK2 and 3 in mice prevented neutrophil recruitment following intraperitoneal injection of IL-33.

Journal ArticleDOI
TL;DR: This review will summarize current knowledge of how TVM cells are generated, their memory‐like hallmarks, how they are maintained during steady state, infection and aging, and propose a model to integrate key signaling pathways during their generation.
Abstract: Immunological memory is a phenomenon where the immune system can respond more rapidly to pathogens and immunological challenges that it has previously encountered. It is defined by several key hallmarks. After an initial encounter, immune cells (1) expand and (2) differentiate to form memory cell populations. Memory cells are (3) long-lived and (4) facilitate more rapid immune responses to subsequent infection because of (i) an increase in cell number, (ii) a decrease in the signaling threshold required for entry into cell cycle or effector function and (iii) localization of cells to tissue sites for surveillance. Classically, immunological memory has been antigen specific but it is becoming apparent that mechanisms of immunological memory can be co-opted by innate or antigen-inexperienced immune cells to generate heterogeneity in immune responses. One such cell is the virtual memory CD8 T (TVM ) cell, which is a semi-differentiated but antigen-naive CD8 T-cell population. This review will summarize current knowledge of how TVM cells are generated, their memory-like hallmarks, how they are maintained during steady state, infection and aging, and propose a model to integrate key signaling pathways during their generation.

Journal ArticleDOI
TL;DR: This review will concentrate on the involvement of the phagocytes, namely macrophages and neutrophils, with a particular focus on the more recent understanding of how interactions between these two cell types impact on the final outcome of tissue repair.
Abstract: Immune cells are rapidly recruited to a site of injury or infection. Although the importance of phagocytic immune cells in clearing bacteria has long been appreciated, the advent of technologies allowing more in-depth analysis of cellular function, such as intravital microscopy and the use of genetically modified animal models, has allowed much deeper insight into the complex roles of these cells play during tissue repair. Many immune cells contribute to the repair process; however, this review will concentrate on the involvement of the phagocytes, namely macrophages and neutrophils, with a particular focus on our more recent understanding of how interactions between these two cell types impact on the final outcome of tissue repair.

Journal ArticleDOI
TL;DR: Overall, the findings show how ERα‐engaged infiltrating macrophages initiate chronic inflammation and promote the aggressive progression of endometrial cancer cells.
Abstract: Tumor-associated macrophages (TAMs) exert tumor-promoting effects. There have been reports that estrogen receptors (ERs) are expressed on the infiltrating macrophages of endometriosis, ovarian cancer and lung cancer. However, the role of ERs in macrophages is not well characterized. In this study, we identified that ER alpha (ERα) expression on the macrophages of human endometrial cancer was positively correlated with cancer progression. Conditioned medium from selective ERα agonist-treated M2 macrophages induced the epithelial to mesenchymal transition (EMT) in endometrial cancer cells. However, this effect can be inhibited by ERα antagonist. Here, we showed that macrophages ERα-engaged abundantly produced chemokine (C-C motif) ligand 18 (CCL18), and its expression promoted the invasion of endometrial cancer cells by activating the extracellular signal-regulated kinase 1/2 pathway, whereas suppressing CCL18 abrogated these effects. Furthermore, we identified that CCL18 derived from TAMs upregulated KIF5B expression to promote EMT via activating the PI3K/AKT/mTOR signaling pathway in endometrial cancer. Overall, our findings show how ERα-engaged infiltrating macrophages initiate chronic inflammation and promote the aggressive progression of endometrial cancer cells. ERα-positive TAMs act as drivers of endometrial cancer, which may become a potential therapeutic target.

Journal ArticleDOI
TL;DR: A subset of the recently described conditions, emphasizing the clinical features as well as the immunophenotype and pathophysiology, are summarized.
Abstract: Inherited defects in genes encoding for proteins that are involved in the assembly and dynamics of the actin skeleton have increasingly been identified in patients presenting with primary immunodeficiencies. In this review, we summarize a subset of the recently described conditions, emphasizing the clinical features as well as the immunophenotype and pathophysiology.

Journal ArticleDOI
TL;DR: Temporal analysis of development using a molecular timer in combination with loss of miR‐181a/b‐1 revealed thatMAIT cells complete functional maturation in the periphery and indicates that functionally mature MAIT cells in the thymus are long‐term resident cells, providing insight into the dynamics of MAIT cell development in vivo.
Abstract: Mucosal-associated invariant T (MAIT) cells constitute a major fraction of innate-like T cells in humans with critical roles in defense against microbial pathogens and in maintaining mucosal integrity. However, the molecular mechanisms underlying MAIT cell development remain largely elusive. Here we investigated the role of miR-181a/b-1, a pair of microRNAs that serve as rheostat of TCR signal strength, in this process. Loss of miR-181a/b-1 in mice resulted in a profound arrest in early MAIT cell development. As a consequence, in the absence of miR-181a/b-1, thymic MAIT cells failed to acquire functional maturity based on expression of transcription factors PLZF, T-bet and RORγt. Temporal analysis of development using a molecular timer in combination with loss of miR-181a/b-1 revealed that MAIT cells complete functional maturation in the periphery and indicates that functionally mature MAIT cells in the thymus are long-term resident cells. Thus, our study provides insight into the dynamics of MAIT cell development in vivo. Of note, deletion of miR-181a/b-1 alone completely mirrored loss of all miRNAs.

Journal ArticleDOI
TL;DR: The current state-of-the-art regarding the functional activities of eicosanoids in tissue repair responses during homeostasis and disease is summarized and an outlook is provided on how they may be targeted by future therapeutic strategies to achieve physiological tissue repair and prevent scarring and loss of tissue function in various disease contexts.
Abstract: Trauma or infection can result in tissue damage, which needs to be repaired in a well-orchestrated manner to restore tissue function and homeostasis. Lipid mediators derived from arachidonic acid (termed eicosanoids) play central and versatile roles in the regulation of tissue repair. Here, I summarize the current state-of the-art regarding the functional activities of eicosanoids in tissue repair responses during homeostasis and disease. I also describe how eicosanoids are produced during tissue damage and repair in a time-, cell- and tissue-dependent fashion. In particular, recent insights into the roles of eicosanoids in epithelial barrier repair are reviewed. Furthermore, the distinct roles of different eicosanoids in settings of pathological tissue repair such as chronic wounds, scarring or fibrosis are discussed. Finally, an outlook is provided on how eicosanoids may be targeted by future therapeutic strategies to achieve physiological tissue repair and prevent scarring and loss of tissue function in various disease contexts.

Journal ArticleDOI
TL;DR: It is shown that CD96 is predominantly expressed by T cells and has a unique lymphocyte expression profile, and may be a promising immune checkpoint to enhance T‐cell function against human cancer and infectious disease.
Abstract: CD96 has recently been shown to be a potent immune checkpoint molecule in mice, but a similar role in humans is not known In this study, we provide a detailed map of CD96 expression across human lymphocyte lineages, the kinetics of CD96 regulation on T‐cell activation and co‐expression with other conventional and emerging immune checkpoint molecules We show that CD96 is predominantly expressed by T cells and has a unique lymphocyte expression profile CD96high T cells exhibited distinct effector functions on activation Of note, CD96 expression was highly correlated with T‐cell markers in primary and metastatic human tumors and was elevated on antigen‐experienced T cells and tumor‐infiltrating lymphocytes Collectively, these data demonstrate that CD96 may be a promising immune checkpoint to enhance T‐cell function against human cancer and infectious disease

Journal ArticleDOI
TL;DR: It is shown that Lipofectamine induced type I IFN signaling in both RAW 264.7 macrophage‐like cells and primary bone marrow‐derived macrophages, and the transfection reagent Xfect did not activate type IIFN signaling.
Abstract: The commercial transfection reagent Lipofectamine has been widely used for cytoplasmic delivery of nucleic acids and for cytosolic engagement with intracellular innate immune sensors to trigger type I interferon (IFN) production. However, the effect of Lipofectamine alone on type I IFN response has not been studied in detail. Here, we show that Lipofectamine induced type I IFN signaling in both RAW 264.7 macrophage-like cells and primary bone marrow-derived macrophages. Type I IFN induction was dependent on interferon regulatory factor (IRF)3 and IRF7 and partially required the toll/interleukin-1 receptor-domain-containing adapter-inducing interferon-β. In contrast, the transfection reagent Xfect did not activate type I IFN signaling. Our study highlights the potential confounding experimental interpretation when using Lipofectamine-based transfection for delivering intracellular ligands and provides important insights into lipid signaling in innate immune responses.

Journal ArticleDOI
TL;DR: Evidence now indicates a diverse range of LC‐mediated effects including the relay of viral antigens in herpes simplex infection, recruitment of eosinophils in atopic dermatitis and promotion of a Th17 response in Candida infection.
Abstract: Langerhans cells (LCs) are epidermal immune cells of myeloid origin. Although these cells were primarily thought to play a defensive role in the skin, evidence now indicates a diverse range of LC-mediated effects including the relay of viral antigens in herpes simplex infection, recruitment of eosinophils in atopic dermatitis and promotion of a Th17 response in Candida infection. LCs may have a protective or suppressive function in pathologies of the skin, with differing functions being driven by the skin milieu. Understanding LC function will help guide the development of interventions that modulate these cells for therapeutic benefit.

Journal ArticleDOI
TL;DR: The unique metabolic requirements of inflammatory and anti‐inflammatory macrophages and the potential contribution of macrophage metabolism to each phase of wound healing are explored.
Abstract: Macrophages are a critical component of the innate immune response, and compose the first response to perturbations in tissue homeostasis. Their unique ability to dynamically integrate diverse stimuli underlies their important role in the healing response from first insult to re-establishment of tissue homeostasis. While the roles of macrophages in tissue repair have been well-described in vitro and in vivo, the influence of cellular metabolism on macrophage function during tissue repair remains an unexplored area of immunometabolism. In this review, we will explore the unique metabolic requirements of inflammatory and anti-inflammatory macrophages and the potential contribution of macrophage metabolism to each phase of wound healing.

Journal ArticleDOI
TL;DR: The adoptive transfer of HDAC2 knockdown macrophages attenuates the LPS‐triggered innate inflammatory response in vivo, and these mice are less sensitive to endotoxin shock and Escherichia coli‐induced sepsis.
Abstract: The role of specific histone deacetylase (HDAC) proteins in regulating the lipopolysaccharide (LPS)-induced inflammatory response and its underlying mechanisms are unclear. Here, HDAC2, a class I HDAC family protein, is essential for the LPS-triggered inflammatory response in macrophages. LPS stimulation increases HDAC2 expression in macrophages. Knockdown of HDAC2 decreases the expression of proinflammatory genes, such as IL-12, TNF-α and iNOS following stimulation with LPS. The adoptive transfer of HDAC2 knockdown macrophages attenuates the LPS-triggered innate inflammatory response in vivo, and these mice are less sensitive to endotoxin shock and Escherichia coli-induced sepsis. Mechanistically, the c-Jun protein is the main target of HDAC2-mediated LPS-induced production of proinflammatory cytokines. Moreover, HDAC2 knockdown increases the expression of c-Jun, which directly binds the promoters of proinflammatory genes and forms nuclear receptor corepressor complexes to inhibit the transcription of proinflammatory genes in macrophages. These effects are rescued by c-Jun expression. According to the chromatin immunoprecipitation analysis, HDAC2 also selectively suppresses c-Jun expression by directly binding to its promoter and modifying histone acetylation after LPS stimulation. Our findings define a new function and mechanism of the HDAC2/c-Jun signaling network that regulates the LPS-induced immune response in macrophages.

Journal ArticleDOI
TL;DR: Very few IGHV sequences of C57BL/6 and BALB/c mice were shared with strains representing major subspecies, suggesting that their IGH loci may be complex mosaics of genes of disparate origins, which suggests a similar level of diversity is likely present in the I GH loci of other classical inbred strains.
Abstract: The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflects differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ) and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ and PWD/PhJ) and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies. A total of 341 germline IGHV sequences were inferred in the wild-derived strains, including 247 not curated in the international ImMunoGeneTics information system. By contrast, 83/84 inferred NOD IGHV genes had previously been observed in C57BL/6 mice. Variability among the strains examined was observed for only a single IGHJ gene, involving a description of a novel allele. By contrast, unexpected variation was found in the IGHD gene loci, with four previously unreported IGHD gene sequences being documented. Very few IGHV sequences of C57BL/6 and BALB/c mice were shared with strains representing major subspecies, suggesting that their IGH loci may be complex mosaics of genes of disparate origins. This suggests a similar level of diversity is likely present in the IGH loci of other classical inbred strains. This must now be documented if we are to properly understand interstrain variation in models of antibody-mediated disease.

Journal ArticleDOI
TL;DR: It is suggested that mTregs generated after IAV infection differentiate into a phenotypically distinct and functionally enhanced Treg subset that can be activated in an antigen‐specific manner to exert immunosuppression.
Abstract: Memory regulatory T cells (mTregs) have been demonstrated to persist long-term in hosts after the resolution of primary influenza A virus (IAV) infection. However, whether such IAV infection-experienced (IAV-experienced) mTregs differentiate into a phenotypically and functionally distinct Treg subset and what function they play at the infection site remains poorly defined. In this study, we characterized the phenotype, examined the responsiveness and assessed the suppressive function of IAV-experienced memory Tregs (mTregs). In comparison with inexperienced naive Tregs (nTregs), mTregs exhibited elevated expression of CD39, CD69, CD103, cytotoxic T lymphocyte-associated antigen-4, leukocyte function-associated antigen-1 and programmed cell death-1 and could be activated in an antigen-specific manner in vitro and in vivo. When mTregs and nTregs were adoptively cotransferred into recipient mice, mTregs had a competitive advantage in migrating to the IAV-infected lungs. mTregs were more capable of controlling in vitro proliferation of CD4+ and CD8+ T cells and suppressed CD40 and CD86 upregulation on bone marrow-derived dendritic cells. Adoptively transferred mTregs, but not adoptively transferred nTregs, significantly attenuated body weight loss, lung pathology and immune cell infiltration into the infected lungs after IAV infection. These results suggest that mTregs generated after IAV infection differentiate into a phenotypically distinct and functionally enhanced Treg subset that can be activated in an antigen-specific manner to exert immunosuppression. We propose vaccination to induce such mTregs as a potential novel strategy to protect against severe IAV infection.

Journal ArticleDOI
TL;DR: IL‐37 administered intranasally inhibited house dust mite‐induced chronic airway eosinophilic inflammation, goblet cell hyperplasia, peribronchial collagen deposition and airway hyperresponsiveness to methacholine, and it was demonstrated that the production of thymic stromal lymphopoietin (TSLP) in the lung tissue was associated with IL‐37.
Abstract: Interleukin (IL)-37 has been described as a negative regulator of immune responses and is critical for asthma pathogenesis, but the mechanisms behind the protective role of IL-37 against allergic asthma are less well understood. We show here that IL-37 administered intranasally inhibited house dust mite (HDM)-induced chronic airway eosinophilic inflammation, goblet cell hyperplasia, peribronchial collagen deposition and airway hyperresponsiveness (AHR) to methacholine. In contrast to a weakened Th2 response in the lung that was characterized by the downregulation of Th2-associated cytokines and chemokines in IL-37-treated mice, IL-37 has no effect on relevant markers of systemic Th2 immune including serum immunoglobulins expression and in vitro production of Th2-associated cytokines by splenocytes on HDM recall. We demonstrated that the production of thymic stromal lymphopoietin (TSLP) in the lung tissue was associated with IL-37. Importantly, compared with IL-37 alone, TSLP coadministration with IL-37 restored HDM-induced airway inflammation and structural alterations, increased AHR to methacholine and promoted Th2-associated cytokine production. We further found that IL-37 inhibited the induction of TSLP expression by the main antigen of house dust mite, Der p1, by suppressing NF-κB and extracellular signal regulated kinase 1/2 (ERK1/2) activation in human bronchial epithelial (16-HBE) cells in vitro. These data highlight the importance of TSLP in IL-37-mediated protective role in asthma. IL-37 might represent a useful innovative and alternative therapy to control TSLP production in the airway.

Journal ArticleDOI
TL;DR: The addition ofIL‐6 enhances ER expansion and the profibrotic capacity of IL‐4/IL‐13‐mediated activation of macrophages, andTherapeutic strategies targeting IL‐6 or the IRE1‐XBP1 axis may be beneficial to prevent the profIBrotic Capacity of Macrophages.
Abstract: Although recent evidence has shown that IL-6 is involved in enhanced alternative activation of macrophages toward a profibrotic phenotype, the mechanisms leading to their increased secretory capacity are not fully understood. Here, we investigated the effect of IL-6 on endoplasmic reticulum (ER) expansion and alternative activation of macrophages in vitro. An essential mediator in this ER expansion process is the IRE1 pathway, which possesses a kinase and endoribonuclease domain to cleave XBP1 into a spliced bioactive molecule. To investigate the IRE1-XBP1 expansion pathway, IL-4/IL-13 and IL-4/IL-13/IL-6-mediated alternative programming of murine bone marrow-derived and human THP1 macrophages were assessed by arginase activity in cell lysates, CD206 and arginase-1 expression by flow cytometry, and secreted CCL18 by ELISA, respectively. Ultrastructural intracellular morphology and ER biogenesis were examined by transmission electron microscopy and immunofluorescence. Transcription profiling of 128 genes were assessed by NanoString and Pharmacological inhibition of the IRE1-XBP1 arm was achieved using STF-083010 and was verified by RT-PCR. The addition of IL-6 to the conventional alternative programming cocktail IL-4/IL-13 resulted in increased ER and mitochondrial expansion, profibrotic profiles and unfolded protein response-mediated induction of molecular chaperones. IRE1-XBP1 inhibition substantially reduced the IL-6-mediated hyperpolarization and normalized the above effects. In conclusion, the addition of IL-6 enhances ER expansion and the profibrotic capacity of IL-4/IL-13-mediated activation of macrophages. Therapeutic strategies targeting IL-6 or the IRE1-XBP1 axis may be beneficial to prevent the profibrotic capacity of macrophages.

Journal ArticleDOI
TL;DR: The in vivo migratory behavior of AML cells and their response to chemotherapy and CXCR4 antagonism are characterized, using high‐resolution 2‐photon and confocal intravital microscopy of mouse calvarium BM and the well‐established MLL‐AF9‐driven AML mouse model.
Abstract: The majority of acute myeloid leukemia (AML) patients have a poor response to conventional chemotherapy. The survival of chemoresistant cells is thought to depend on leukemia-bone marrow (BM) microenvironment interactions, which are not well understood. The CXCL12/CXCR4 axis has been proposed to support AML growth but was not studied at the single AML cell level. We recently showed that T-cell acute lymphoblastic leukemia (T-ALL) cells are highly motile in the BM; however, the characteristics of AML cell migration within the BM remain undefined. Here, we characterize the in vivo migratory behavior of AML cells and their response to chemotherapy and CXCR4 antagonism, using high-resolution 2-photon and confocal intravital microscopy of mouse calvarium BM and the well-established MLL-AF9-driven AML mouse model. We used the Notch1-driven T-ALL model as a benchmark comparison and AMD3100 for CXCR4 antagonism experiments. We show that AML cells are migratory, and in contrast with T-ALL, chemoresistant AML cells become less motile. Moreover, and in contrast with T-ALL, the in vivo exploratory behavior of expanding and chemoresistant AML cells is unaffected by AMD3100. These results expand our understanding of AML cells-BM microenvironment interactions, highlighting unique traits of leukemia of different lineages.