scispace - formally typeset
Search or ask a question

Showing papers in "Integrative and Comparative Biology in 2010"


Journal ArticleDOI
TL;DR: It is suggested that the relationship between coral and their bacterial associates represents a valuable model that can be applied to the broader discipline of invertebrate-microbial interactions, and evidence that coral-bacterial assemblages could be sensitive to the effects of climatic change.
Abstract: The importance of associations between microorganisms and their invertebrate hosts is becoming increasingly apparent. An emerging field, driven by the necessity to understand the microbial relationships that both maximize coral health and cause coral disease, is the study of coral-bacteria interactions. In this article, we review our current understanding of the diversity, specificity, development, and functions of coral-associated bacteria. We also summarize what is known regarding the role of coral microbiota in the health and disease of coral. We conduct a meta-analysis to determine whether the presence of unique taxa correlates with the state of coral health (i.e. healthy, diseased or bleached), as well as whether coral reef habitats harbor clusters of distinct taxa. We find that healthy and bleached corals harbor similar dominant taxa, although bleached corals had higher proportions of Vibrio and Acidobacteria. Diseased corals generally had more Rhodobacter, Clostridia, and Cyanobacteria sequences, and fewer Oceanospirillum sequences. We caution, however, that while 16S rRNA is useful for microbial species identification, it is a poor predictor of habitat or lifestyle, and care should be taken in interpretation of 16S rRNA surveys to identify potential pathogens amongst complex coral-microbial assemblages. Finally, we highlight evidence that coral-bacterial assemblages could be sensitive to the effects of climatic change. We suggest that the relationship between coral and their bacterial associates represents a valuable model that can be applied to the broader discipline of invertebrate-microbial interactions.

238 citations


Journal ArticleDOI
TL;DR: It is demonstrated that habitat cascades are a general phenomenon that enhances species abundance and diversity in forests, salt marshes, seagrass meadows, and seaweed beds and proposed that indirect positive effects on focal organisms will be strongest when the intermediate habitat former is larger and different in form and function from the basal habitat former.
Abstract: The importance of positive interactions is increasingly acknowledged in contemporary ecology. Most research has focused on direct positive effects of one species on another. However, there is recent evidence that indirect positive effects in the form of facilitation cascades can also structure species abundances and biodiversity. Here we conceptualize a specific type of facilitation cascade-the habitat cascade. The habitat cascade is defined as indirect positive effects on focal organisms mediated by successive facilitation in the form of biogenic formation or modification of habitat. Based on a literature review, we demonstrate that habitat cascades are a general phenomenon that enhances species abundance and diversity in forests, salt marshes, seagrass meadows, and seaweed beds. Habitat cascades are characterized by a hierarchy of facilitative interactions in which a basal habitat former (typically a large primary producer, e.g., a tree) creates living space for an intermediate habitat former (e.g., an epiphyte) that in turn creates living space for the focal organisms (e.g., spiders, beetles, and mites). We then present new data on a habitat cascade common to soft-bottom estuaries in which a relatively small invertebrate provides basal habitat for larger intermediate seaweeds that, in turn, generate habitat for focal invertebrates and epiphytes. We propose that indirect positive effects on focal organisms will be strongest when the intermediate habitat former is larger and different in form and function from the basal habitat former. We also discuss how humans create, modify, and destroy habitat cascades via global habitat destruction, climatic change, over-harvesting, pollution, or transfer of invasive species. Finally, we outline future directions for research that will lead to a better understanding of habitat cascades.

223 citations


Journal ArticleDOI
TL;DR: It is hypothesize that this signaling pathway plays a critical role in the determination of species longevity and that this pathway may indeed be the master regulator of the aging process.
Abstract: Although aging is a ubiquitous process that prevails in all organisms, the mechanisms governing both the rate of decline in functionality and the age of onset remain elusive. A profound constitutively upregulated cytoprotective response is commonly observed in naturally long-lived species and experimental models of extensions to lifespan (e.g., genetically-altered and/or experimentally manipulated organisms), as indicated by enhanced resistance to stress and upregulated downstream components of the cytoprotective nuclear factor erythroid 2-related factor 2 (Nrf2)-signaling pathway. The transcription factor Nrf2 is constitutively expressed in all tissues, although levels may vary among organs, with the key detoxification organs (kidney and liver) exhibiting highest levels. Nrf2 may be further induced by cellular stressors including endogenous reactive-oxygen species or exogenous electrophiles. The Nrf2-signaling pathway mediates multiple avenues of cytoprotection by activating the transcription of more than 200 genes that are crucial in the metabolism of drugs and toxins, protection against oxidative stress and inflammation, as well as playing an integral role in stability of proteins and in the removal of damaged proteins via proteasomal degradation or autophagy. Nrf2 interacts with other important cell regulators such as tumor suppressor protein 53 (p53) and nuclear factor-kappa beta (NF-κB) and through their combined interactions is the guardian of healthspan, protecting against many age-related diseases including cancer and neurodegeneration. We hypothesize that this signaling pathway plays a critical role in the determination of species longevity and that this pathway may indeed be the master regulator of the aging process.

207 citations


Journal ArticleDOI
TL;DR: This work concludes that adopting an integrative research strategy will provide a better understanding of the interactions between biological levels of organization, of what role migrants play in disease transmission, and of how to conserve migrants and the habitats upon which they depend.
Abstract: Billions of animals migrate each year. To successfully reach their destination, migrants must have evolved an appropriate genetic program and suitable developmental, morphological, physiological, biomechanical, behavioral, and life-history traits. Moreover, they must interact successfully with biotic and abiotic factors in their environment. Migration therefore provides an excellent model system in which to address several of the "grand challenges" in organismal biology. Previous research on migration, however, has often focused on a single aspect of the phenomenon, largely due to methodological, geographical, or financial constraints. Integrative migration biology asks 'big questions' such as how, when, where, and why animals migrate, which can be answered by examining the process from multiple ecological and evolutionary perspectives, incorporating multifaceted knowledge from various other scientific disciplines, and using new technologies and modeling approaches, all within the context of an annual cycle. Adopting an integrative research strategy will provide a better understanding of the interactions between biological levels of organization, of what role migrants play in disease transmission, and of how to conserve migrants and the habitats upon which they depend.

192 citations


Journal ArticleDOI
TL;DR: Migratory bats provide an interesting example of evolutionary convergence with birds, which may provide evidence for the generality of the bird model to the evolution of migration by flight in vertebrates.
Abstract: The metaphor of marathon running is inadequate to fully capture the magnitude of long-distance migratory flight of birds. In some respects a journey to the moon seems more appropriate. Birds have no access to supplementary water or nutrition during a multi-day flight, and they must carefully budget their body fat and protein stores to provide both fuel and life support. Fatty acid transport is crucial to successful non-stop migratory flight in birds. Although fat is the most energy-dense metabolic fuel, the insolubility of its component fatty acids makes them difficult to transport to working muscles fast enough to support the highly aerobic exercise required to fly. Recent evidence indicates that migratory birds compensate for this by expressing large amounts of fatty acid transport proteins on the membranes of the muscles (FAT/CD36 and FABPpm) and in the cytosol (H-FABP). Through endogenous mechanisms and/or diet, migratory birds may alter the fatty acid composition of the fat stores and muscle membranes to improve endurance during flight. Fatty acid chain length, degree of unsaturation, and placement of double bonds can affect the rate of mobilization of fatty acids from adipose tissue, utilization of fatty acids by muscles, and whole-animal performance. However, there is great uncertainty about how important fatty acid composition is to the success of migration or whether particular types of fatty acids (e.g., omega-3 or omega-6) are most beneficial. Migratory bats provide an interesting example of evolutionary convergence with birds, which may provide evidence for the generality of the bird model to the evolution of migration by flight in vertebrates. Yet only recently have attempts been made to study bat migration physiology. Many aspects of their fuel metabolism are predicted to be more similar to those of migrant birds than to those of non-flying mammals. Bats may be distinct from most birds in their potential to conserve energy by using torpor between flights, and in the behavioral and physiological trade-offs they may make between migration and reproduction, which often overlap.

182 citations


Journal ArticleDOI
TL;DR: Emerging next-generation genomic-sequencing technologies offer the best hope for a breakthrough in the understanding of phylogenetic relationships and of evolution of morphological traits in Octocorallia.
Abstract: The anthozoan sub-class Octocorallia, comprising approximately 3000 species of soft corals, gorgonians, and sea pens, remains one of the most poorly understood groups of the phylum Cnidaria. Efforts to classify the soft corals and gorgonians at the suprafamilial level have long thwarted taxonomists, and the subordinal groups in current use are widely recognized to represent grades of colony forms rather than clades. Molecular phylogenetic analyses of the sub-class do not support either the current morphologically based subordinal or familial-level taxonomy. To date, however, the resolution necessary to propose an alternative, phylogenetic classification of Octocorallia or to elucidate patterns of morphological evolution within the group is lacking. Attempts to understand boundaries between species and interspecific or intraspecific phylogenetic relationships have been hampered by the very slow rate of mitochondrial gene evolution in Octocorallia, and a consequent dearth of molecular markers with variation sufficient to distinguish species (or sometimes genera). A review of the available ITS2 sequence data for octocorals, however, reveals a yet-unexplored phylogenetic signal both at sequence and secondary-structure levels. In addition, incongruence between mitochondrial and nuclear gene trees suggests that hybrid speciation and reticulate evolution may be an important mechanism of diversification in some genera. Emerging next-generation genomic-sequencing technologies offer the best hope for a breakthrough in our understanding of phylogenetic relationships and of evolution of morphological traits in Octocorallia. Genome and transcriptome sequencing may provide enough characters to resolve relationships at the deepest levels of the octocoral tree, while simultaneously offering an efficient means to screen for new genetic markers variable enough to distinguish species and populations.

161 citations


Journal ArticleDOI
TL;DR: It is suggested that light is the primary factor determining composition of phytoplankton communities in the Ross Sea and F. cylindrus has a competitive advantage under conditions where mixed layers are shallow and light levels are relatively constant and high.
Abstract: Synopsis The Ross Sea, Antarctica, supports two distinct populations of phytoplankton, one that grows well in sea ice and blooms in the shallow mixed layers of the Western marginal ice zone and the other that can be found in sea ice but thrives in the deeply mixed layers of the Ross Sea. Dominated by diatoms (e.g. Fragilariopsis cylindrus) and the prymnesiophyte Phaeocystis antarctica, respectively, the processes leading to the development of these different phytoplankton assemblages are not well known. The goal of this article was to gain a better understanding of the photophysiological characteristics that allow each taxon to dominate its specific habitat. Cultures of F. cylindrus and P. antarctica were each grown semi-continuously at four different constant irradiances (5, 25, 65, and 125 � molquanta/m 2 /s). Fragilariopsis cylindrus produced far less photosynthetic pigment per cell than did P. antarctica but much more photoprotective pigment. Fragilariopsis cylindrus also exhibited substantially lower rates of photosynthesis and growth but also was far less susceptible to photoinhibition of cell growth. Excess photosynthetic capacity, a measure of the ability of phytoplankton to exploit variable light environments, was significantly higher in both strains of P. antarctica than in F. cylindrus. The combination of these characteristics suggests that F. cylindrus has a competitive advantage under conditions where mixed layers are shallow and light levels are relatively constant and high. In contrast, P. antarctica should dominate waters where mixed layers are deep and light levels are variable. These results are consistent with distributions of phytoplankton in the Ross Sea and suggest that light is the primary factor determining composition of phytoplankton communities.

138 citations


Journal ArticleDOI
TL;DR: The habitat utilization of top predators has been studied using electronic tags to follow their movements and foraging behavior and these data inform us on how these important top predators are likely to respond to climatic change, as well as about how the Southern Ocean is changing.
Abstract: Top predators integrate resources over time and space, and depending on the particular species they represent, different components of the marine environment. The habitat utilization of top predators has been studied using electronic tags to follow their movements and foraging behavior. In addition, these tags provide information on the physical characteristics of the water column (temperature and salinity) at a scale and resolution that is coincident with the animals' behavior. In addition to data on the animals' behavior, these tags provide physical oceanographic data in regions or at times they cannot be collected using other currently available technologies. These data inform us on how these important top predators are likely to respond to climatic change, as well as about how the Southern Ocean is changing.

128 citations


Journal ArticleDOI
TL;DR: The results suggest that at least early subsets of the population are affected by local conditions and early birds use local conditions to fine-tune the date of their spring arrival while individuals arriving later are driven by other factors than local conditions e.g. endogenous control.
Abstract: Evidence for climate-driven phenological changes is rapidly increasing at all trophic levels. Our current poor knowledge of the detailed control of bird migration from the level of genes and hormonal control to direct physiological and behavioral responses hampers our ability to understand and predict consequences of climatic change for migratory birds. In order to better understand migration phenology and adaptation in environmental changes, we here assess the scale at which weather affects timing of spring migration in passerine birds. We use three commonly used proxies of spring-time climatic conditions: (1) vegetation "greenness" (NDVI) in Europe, (2) local spring temperatures in northern Europe, and (3) the North Atlantic Oscillation Index (NAO) as predictors of the phenology of avian migration as well as the strength of their effect on different subsets of populations and the dependence of correlations on species-specific migratory strategy. We analyze phenological patterns of the entire spring migration period in 12 Palaearctic passerine species, drawing on long-term data collected at three locations along a longitudinal gradient situated close to their northern European breeding area. Local temperature was the best single predictor of phenology with the highest explanatory power achieved in combination with NAO. Furthermore, early individuals are more affected by climatic variation compared to individuals on later passage, indicating that climatic change affects subsets of migratory populations differentially. Species wintering closer to the breeding areas were affected more than were those travelling longer distances and this pattern was strongest for the earliest subsets of the population. Overall, our results suggest that at least early subsets of the population are affected by local conditions and early birds use local conditions to fine-tune the date of their spring arrival while individuals arriving later are driven by other factors than local conditions e.g. endogenous control. Understanding what cues migratory organisms use to arrive at an optimum time is important for increasing our knowledge of fundamental issues like decision making in organisms during migration and is crucial for future protection of migratory organisms.

111 citations


Journal ArticleDOI
TL;DR: Recent studies of plant biomechanics highlighting several current research themes in the field are summarized, including expulsion of high-speed reproductive projectiles, generation of slow movements by shrinking and swelling cell walls, effects of ontogenetic shifts in mechanical properties of stems, flexible reconfiguration and material properties of seaweeds under crashing waves, and the development of botanically-inspired commercial products.
Abstract: Plant and animal biomechanists have much in common. Although their frame of reference differs, they think about the natural world in similar ways. While researchers studying animals might explore airflow around flapping wings, the actuation of muscles in arms and legs, or the material properties of spider silk, researchers studying plants might explore the flow of water around fluttering seaweeds, the grasping ability of climbing vines, or the material properties of wood. Here we summarize recent studies of plant biomechanics highlighting several current research themes in the field: expulsion of high-speed reproductive projectiles, generation of slow movements by shrinking and swelling cell walls, effects of ontogenetic shifts in mechanical properties of stems, flexible reconfiguration and material properties of seaweeds under crashing waves, and the development of botanically-inspired commercial products. Our hope is that this synopsis will resonate with both plant and animal biologists, encourage cross-pollination across disciplines, and promote fruitful interdisciplinary collaborations in the future.

110 citations


Journal ArticleDOI
TL;DR: It is suggested that ecosystem engineering can be profitably subdivided into four narrower functional categories reflecting four broad mechanisms by which ecosystem engineering occurs: structural engineers, bioturbators, chemical engineers, and light engineers.
Abstract: Ecologists have long known that certain organisms fundamentally modify, create, or define habitats by altering the habitat's physical properties. In the past 15 years, these processes have been formally defined as "ecosystem engineering", reflecting a growing consensus that environmental structuring by organisms represents a fundamental class of ecological interactions occurring in most, if not all, ecosystems. Yet, the precise definition and scope of ecosystem engineering remains debated, as one should expect given the complexity, enormity, and variability of ecological systems. Here I briefly comment on a few specific current points of contention in the ecosystem engineering concept. I then suggest that ecosystem engineering can be profitably subdivided into four narrower functional categories reflecting four broad mechanisms by which ecosystem engineering occurs: structural engineers, bioturbators, chemical engineers, and light engineers. Finally, I suggest some conceptual model frameworks that could apply broadly within these functional groups.

Journal ArticleDOI
TL;DR: This work presents the central role of behavior in a diagram illustrating the multifaceted program emphasizing the necessity for understanding this nexus and to fully appreciate the organism in its environment given the ongoing changes affected by contemporary human induced, rapid environmental change (HIREC).
Abstract: A major grand challenge in biology is to understand the interactions between an organism and its environment. Behavior resides in the central core of this association as it affects and is affected by development, physiology, ecological dynamics, environmental choice, and evolution. We present this central role of behavior in a diagram illustrating the multifaceted program emphasizing the necessity for understanding this nexus and to fully appreciate the organism in its environment given the ongoing changes affected by contemporary human induced, rapid environmental change (HIREC). We call for the consideration of educational and research focuses to concentrate on the interdisciplinary role that behavior plays in the integration of biological processes.

Journal ArticleDOI
TL;DR: It is concluded that more detailed knowledge of the development of spiralian taxa is necessary to understand the mechanisms behind these changes, and to understanding the evolutionary changes and adaptations of Spiralian embryos.
Abstract: Recent progress in reconstructing animal relationships enables us to draw a better picture of the evolution of important characters such as organ systems and developmental processes. By mapping these characters onto the phylogenetic framework, we can detect changes that have occurred in them during evolution. The spiral mode of development is a complex of characters that is present in many lineages, such as nemerteans, annelids, mollusks, and polyclad platyhelminthes. However, some of these lineages show variations of this general program in which sub-characters are modified without changing the overlying pattern. Recent molecular phylogenies suggest that spiral cleavage was lost, or at least has deviated from its original pattern, in more lineages than was previously thought (e.g., in rotifers, gastrotrichs, bryozoans, brachiopods, and phoronids). Here, I summarize recent progress in reconstructing the spiralian tree of life and discuss its significance for our understanding of the spiral-cleavage character complex. I conclude that more detailed knowledge of the development of spiralian taxa is necessary to understand the mechanisms behind these changes, and to understand the evolutionary changes and adaptations of spiralian embryos.

Journal ArticleDOI
TL;DR: It is suggested that the ability and necessity to be rare--that is, to maintain populations at low density--are made possible by the low cost of mobility of consumers on land, and that rarity is critical to the attainment of high-terrestrial diversity.
Abstract: Synopsis Between 85% and 95% of all living macroscopic species are found on land; the rest are mainly marine. We argue that the extraordinary diversity on land is geologically recent, dating from the mid-Cretaceous period, 110 million years ago. We suggest that the ability and necessity to be rare—that is, to maintain populations at low density—are made possible by the low cost of mobility of consumers on land, and that rarity is critical to the attainment of high-terrestrial diversity. Increasing productivity beginning in the mid-Cretaceous led to an increase in the survival of populations at low density and to an increase in the intensity of selection for that ability as well as for high mobility and habitat specialization. The pre-eminence of terrestrial, as compared to marine, diversity is therefore an historical phenomenon that is best explained by selection-related changes in mobility, dispersibility, and the evolution of partnerships. In the history of the human economy, the dominance of Europe and North America in terms of wealth and innovation is a very recent phenomenon, dating back to the beginning of the 19th century according to Pomeranz (2000), or perhaps to the age of discovery in the 15th century according to others (Vermeij 2004). Whichever time of origin is correct, there was a great and recent divergence among the economies of the world. Using the same title as Pomeranz did for his landmark book, we explore a similar great divergence in the history of biotic diversity. It has long been known that there are far more species living on land than in the sea. Although the oceans cover a little 470% of Earth’s surface, they

Journal ArticleDOI
TL;DR: Experimental results from swimming eels, bluegill sunfish, and rainbow trout that demonstrate differences in the wakes and in swimming performance are presented, and both experimental and computational results indicate that anguilliform swimmers are more efficient at lower swimming speeds, while carangiform swimming are moreefficient at high speed.
Abstract: In fishes the shape of the body and the swimming mode generally are correlated. Slender-bodied fishes such as eels, lampreys, and many sharks tend to swim in the anguilliform mode, in which much of the body undulates at high amplitude. Fishes with broad tails and a narrow caudal peduncle, in contrast, tend to swim in the carangiform mode, in which the tail undulates at high amplitude. Such fishes also tend to have different wake structures. Carangiform swimmers generally produce two staggered vortices per tail beat and a strong downstream jet, while anguilliform swimmers produce a more complex wake, containing at least two pairs of vortices per tail beat and relatively little downstream flow. Are these differences a result of the different swimming modes or of the different body shapes, or both? Disentangling the functional roles requires a multipronged approach, using experiments on live fishes as well as computational simulations and physical models. We present experimental results from swimming eels (anguilliform), bluegill sunfish (carangiform), and rainbow trout (subcarangiform) that demonstrate differences in the wakes and in swimming performance. The swimming of mackerel and lamprey was also simulated computationally with realistic body shapes and both swimming modes: the normal carangiform mackerel and anguilliform lamprey, then an anguilliform mackerel and carangiform lamprey. The gross structure of simulated wakes (single versus double vortex row) depended strongly on Strouhal number, while body shape influenced the complexity of the vortex row, and the swimming mode had the weakest effect. Performance was affected even by small differences in the wakes: both experimental and computational results indicate that anguilliform swimmers are more efficient at lower swimming speeds, while carangiform swimmers are more efficient at high speed. At high Reynolds number, the lamprey-shaped swimmer produced a more complex wake than the mackerel-shaped swimmer, similar to the experimental results. Finally, we show results from a simple physical model of a flapping fin, using fins of different flexural stiffness. When actuated in the same way, fins of different stiffnesses propel themselves at different speeds with different kinematics. Future experimental and computational work will need to consider the mechanisms underlying production of the anguilliform and carangiform swimming modes, because anguilliform swimmers tend to be less stiff, in general, than are carangiform swimmers.

Journal ArticleDOI
TL;DR: It is demonstrated how the combined use of morphological and molecular tools holds great promise for ending confusion in scleractinian systematics.
Abstract: Scleractinian corals, which include the architects of coral reefs, are found throughout the world's oceans and have left a rich fossil record over their 240 million year history. Their classification has been marked by confusion but recently developed molecular and morphological tools are now leading to a better understanding of the evolutionary history of this important group. Although morphological characters have been the basis of traditional classification in the group, they are relatively few in number. In addition, our current understanding of skeletal growth and homology is limited, and homoplasy is rampant, limiting the usefulness of morphological phylogenetics. Molecular phylogenetic hypotheses for the order, which have been primarily focused on reef-building corals, differ significantly from traditional classification. They suggest that the group is represented by two major lineages and do not support the monophyly of traditional suborders and most traditional families. It appears that once a substantial number of azooxanthellate taxa are included in molecular phylogenetic analyses, basal relationships within the group will be clearly defined. Understanding of relationships at lower taxonomic levels will be best clarified by combined analyses of morphological and molecular characters. Molecular phylogenies are being used to inform our understanding of the evolution of morphological characters in the Scleractinia. Better understanding of the evolution of these characters will help to integrate the systematics of fossil and extant taxa. We demonstrate how the combined use of morphological and molecular tools holds great promise for ending confusion in scleractinian systematics.

Journal ArticleDOI
TL;DR: An approach for rigorously identifying losses of regeneration is outlined, broad patterns of regenerative ability across animals are reviewed, some of the clearest examples of regeneration loss are described, and some possible scenarios by which regeneration may be lost are discussed.
Abstract: The ability to regenerate lost or damaged body parts is widespread among animals and provides obvious potential benefits. It is therefore perplexing that this ability has become greatly restricted or completely lost in many lineages. Despite growing interest in the cellular and molecular basis of regeneration, our understanding of how and why regenerative abilities are lost remains rudimentary. In an effort to develop a framework for studying losses of regeneration, here I outline an approach for rigorously identifying such losses, review broad patterns of regenerative ability across animals, describe some of the clearest examples of regeneration loss, discuss some possible scenarios by which regeneration may be lost, and review recent work in annelids that is providing new insights into loss of regenerative ability.

Journal ArticleDOI
TL;DR: It was found that dermal fibroblasts from tropical birds resisted chemical agents that induce oxidative and non-oxidative stress better than do cells from temperate species, consistent with the hypothesis that birds that live longer invest more in self-maintenance such as antioxidant properties of cells.
Abstract: For vertebrates, body mass underlies much of the variation in metabolism, but among animals of the same body mass, metabolism varies six-fold. Understanding how natural selection can influence variation in metabolism remains a central focus of Physiological Ecologists. Life-history theory postulates that many physiological traits, such as metabolism, may be understood in terms of key maturational and reproductive characteristics over an organism’s life-span. Although it is widely acknowledged that physiological processes serve as a foundation for life-history trade-offs, the physiological mechanisms that underlie the diversification of life-histories remain elusive. Data show that tropical birds have a reduced basal metabolism (BMR), field metabolic rate, and peak metabolic rate compared with temperate counterparts, results consistent with the idea that a low mortality, and therefore increased longevity, and low productivity is associated with low mass-specific metabolic rate. Mass-adjusted BMR of tropical and temperate birds was associated with survival rate, in accordance with the view that animals with a slow pace of life tend to have increased life spans. To understand the mechanisms responsible for a reduced rate of metabolism in tropical birds compared with temperate species, we summarized an unpublished study, based on data from the literature, on organ masses for both groups. Tropical birds had smaller hearts, kidneys, livers, and pectoral muscles than did temperate species of the same body size, but they had a relatively larger skeletal mass. Direct measurements of organ masses for tropical and temperate birds showed that the heart, kidneys, and lungs were significantly smaller in tropical birds, although sample sizes were small. Also from an ongoing study, we summarized results to date on connections between whole-organism metabolism in tropical and temperate birds and attributes of their dermal fibroblasts grown in cell culture. Cells derived from tropical birds had a slower rate of growth, consistent with the hypothesis that these cells have a slower metabolism. We found that dermal fibroblasts from tropical birds resisted chemical agents that induce oxidative and non-oxidative stress better than do cells from temperate species, consistent with the hypothesis that birds that live longer invest more in self-maintenance such as antioxidant properties of cells.

Journal ArticleDOI
TL;DR: The use of metabolic networks to expand the work from genomics and proteomics should pave the way to investigate how relationships of metabolites change with age and how these interactions affect phenotype and function of the aging individual.
Abstract: Synopsis Aging affects a myriad of genetic, biochemical, and metabolic processes, and efforts to understand the underlying molecular basis of aging are often thwarted by the complexity of the aging process. By taking a systems biology approach, network analysis is well-suited to study the decline in function with age. Network analysis has already been utilized in describing other complex processes such as development, evolution, and robustness. Networks of gene expression and protein–protein interaction have provided valuable insight into the loss of connectivity and network structure throughout lifespan. Here, we advocate the use of metabolic networks to expand the work from genomics and proteomics. As metabolism is the final fingerprint of functionality and has been implicated in multiple theories of aging, metabolomic methods combined with metabolite network analyses should pave the way to investigate how relationships of metabolites change with age and how these interactions affect phenotype and function of the aging individual. The metabolomic network approaches highlighted in this review are fundamental for an understanding of systematic declines and of failure to function with age.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of some different modeling approaches and how these have been incorporated into migration research, and provide some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research.
Abstract: Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research.

Journal ArticleDOI
TL;DR: A detailed analysis of the structure and sequence of Prod 1 in relation to other vertebrate three-finger proteins in mammals and zebra fish supports the view that it is a salamander-specific protein this article.
Abstract: Synopsis The most extensive regenerative ability in adult vertebrates is found in the salamanders. Although it is often suggested that regeneration is an ancestral property for vertebrates, our studies on the cell-surface three-finger-protein Prod 1 provide clear evidence for the importance of local evolution of limb regeneration in salamanders. Prod 1 is implicated in both patterning and growth in the regeneration of limbs. It interacts with well-conserved proteins such as the epidermal growth-factor receptor and the anterior gradient protein that are widely expressed in phylogeny. A detailed analysis of the structure and sequence of Prod 1 in relation to other vertebrate three-finger proteins in mammals and zebra fish supports the view that it is a salamander-specific protein. This is the first example of a taxon-specific protein that is clearly implicated in the mechanisms of regeneration. We propose the hypothesis that regeneration depends on the activity of taxon-specific components in orchestrating a cellular machinery that is extensively conserved between regenerating and non-regenerating taxa. This hypothesis has significant implications for our outlook on regeneration in vertebrates, as well as for the strategies employed in extending regenerative ability in mammals.

Journal ArticleDOI
TL;DR: A phylogenetic approach is used to investigate the evolution of morphological characters in Hydrozoa using ribosomal DNA sequence data and confirms the complex evolutionary history of hydrozoan Morphological characters.
Abstract: The diversity of hydrozoan life cycles, as manifested in the wide range of polyp, colony, and medusa morphologies, has been appreciated for centuries. Unraveling the complex history of characters involved in this diversity is critical for understanding the processes driving hydrozoan evolution. In this study, we use a phylogenetic approach to investigate the evolution of morphological characters in Hydrozoa. A molecular phylogeny is reconstructed using ribosomal DNA sequence data. Several characters involving polyp, colony, and medusa morphology are coded in the terminal taxa. These characters are mapped onto the phylogeny and then the ancestral character states are reconstructed. This study confirms the complex evolutionary history of hydrozoan morphological characters. Many of the characters involving polyp, colony, and medusa morphology appear as synapomorphies for major hydrozoan clades, yet homoplasy is commonplace.

Journal ArticleDOI
TL;DR: This study describes how anatomical characters related to feeding and locomotion are correlated with elongation of the body across Actinopterygii and hypothesizes how an axial trait might change at the genetic level.
Abstract: Department of Ecology andEvolutionary Biology, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060, USAFrom the symposium, ‘‘Contemporary Approaches to the Study of the Evolution of Fish Body Plan and Fin Shape’’presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2010, at Seattle,Washington.

Journal ArticleDOI
TL;DR: This model synthesizes earlier ideas about resource allocation and the costs of immunity with recent increases in knowledge about the vertebrate immune system and then puts these concepts into the context of defense against real pathogens in environments where a myriad of factors change in time and space.
Abstract: Migration has fascinated researchers for years and many active areas of study exist. However, the question of how migratory species stay healthy within the context of their annual cycle remains relatively unexplored. This article addresses this question using Red Knots (Calidris canutus) as a model migrant species. We review recent research on immune function in Red Knots and integrate this work with the broader eco-immunological literature to introduce a conceptual model. This model synthesizes earlier ideas about resource allocation and the costs of immunity with recent increases in our knowledge about the vertebrate immune system and then puts these concepts into the context of defense against real pathogens in environments where a myriad of factors change in time and space. We also suggest avenues for further research, which will help to test the model and better link measures of immune function to pressure from pathogens and to optimal defense against disease.

Journal ArticleDOI
TL;DR: The HDL theory provides a novel mechanism underpinning the evolution of life history and ageing in endotherms, and makes a number of testable predictions that directly contrast with the predictions arising from the DST.
Abstract: A major factor influencing life-history strategies of endotherms is body size. Larger endotherms live longer, develop more slowly, breed later and less frequently, and have fewer offspring per attempt at breeding. The classical evolutionary explanation for this pattern is that smaller animals experience greater extrinsic mortality, which favors early reproduction at high intensity. This leads to a short lifespan and early senescence by three suggested mechanisms. First, detrimental late-acting mutations cannot be removed because of the low force of selection upon older animals (mutation accumulation). Second, genes that promote early reproduction will be favored in small animals, even if they have later detrimental effects (antagonistic pleiotropy). Third, small animals may be forced to reduce their investment in longevity assurance mechanisms (LAMs) in favor of investment in reproduction (the disposable soma theory, DST). The DST hinges on three premises: that LAMs exist, that such LAMs are energetically expensive and that the supply of energy is limited. By contrast, the heat dissipation limit (HDL) theory provides a different conceptual perspective on the evolution of life histories in relation to body size. We suggest that rather than being limited, energy supplies in the environment are often unlimited, particularly when animals are breeding, and that animals are instead constrained by their maximum capacity to dissipate body heat, generated as a by-product of their metabolism. Because heat loss is fundamentally a surface-based phenomenon, the low surface-to-volume ratio of larger animals generates significant problems for dissipating the body heat associated with reproductive effort, which then limits their current reproductive investment. We suggest that this is the primary reason why fecundity declines as animal size increases. Because large animals are constrained by their capacity for heat dissipation, they have low reproductive rates. Consequently, only those large animals living in habitats with low extrinsic mortality could survive leading to the familiar patterns of life-history trade-offs and their links to extrinsic mortality rates. The HDL theory provides a novel mechanism underpinning the evolution of life history and ageing in endotherms, and makes a number of testable predictions that directly contrast with the predictions arising from the DST.

Journal ArticleDOI
TL;DR: The sources and the frequencies of injury in a variety of marine invertebrates from different benthic habitats are reviewed, challenges, and approaches for accurately determining injury rates in the field are discussed, and evidence for species-specific, temporal and geographic variation in injury rates is considered.
Abstract: Many marine invertebrates are able to regenerate lost tissue following injury, but regeneration can come at a cost to individuals in terms of reproduction, behavior and physiological condition, and can have effects that reach beyond the individual to impact populations, communities, and ecosystems. For example, removal and subsequent regeneration of clams' siphons, polychaetes' segments, and brittlestars' arms can represent significant energetic input to higher trophic levels. In marine soft-sediment habitats, injury changes infaunal bioturbation rates and thus secondarily influences sediment-mediated competition, adult-larval interactions, and recruitment success. The importance of injury and regeneration as factors affecting the ecology of marine invertebrate communities depends on the frequency of injury, as well as on individual capacity for, and speed of, regeneration. A key question to answer is: "How frequently are marine benthic invertebrates injured?" Here, I review the sources and the frequencies of injury in a variety of marine invertebrates from different benthic habitats, discuss challenges, and approaches for accurately determining injury rates in the field, consider evidence for species-specific, temporal and geographic variation in injury rates, and present examples of indirect effects of injury on marine invertebrates to illustrate how injury and regeneration can modify larger-scale ecological patterns and processes.

Journal ArticleDOI
TL;DR: The "membrane pacemaker" modification of the "oxidative stress" theory of aging proposes that fatty acid composition of membranes, via its influence on peroxidation of lipids, is an important determinant of lifespan (and a link between metabolism and longevity).
Abstract: More than 100 years ago, Max Rubner combined the fact that both metabolic rate and longevity of mammals varies with body size to calculate that "life energy potential" (lifetime energy turnover per kilogram) was relatively constant. This calculation linked longevity to aerobic metabolism which in turn led to the "rate-of-living" and ultimately the "oxidative stress" theories of aging. However, the link between metabolic rate and longevity is imperfect. Although unknown in Rubner's time, one aspect of body composition of mammals also varies with body size, namely the fatty acid composition of membranes. Fatty acids vary dramatically in their susceptibility to peroxidation and the products of lipid peroxidation are very powerful reactive molecules that damage other cellular molecules. The "membrane pacemaker" modification of the "oxidative stress" theory of aging proposes that fatty acid composition of membranes, via its influence on peroxidation of lipids, is an important determinant of lifespan (and a link between metabolism and longevity). The relationship between membrane fatty acid composition and longevity is discussed for (1) mammals of different body size, (2) birds of different body size, (3) mammals and birds that are exceptionally long-living for their size, (4) strains of mice that vary in longevity, (5) calorie-restriction extension of longevity in rodents, (6) differences in longevity between queen and worker honeybees, and (7) variation in longevity among humans. Most of these comparisons support an important role for membrane fatty acid composition in the determination of longevity. It is apparent that membrane composition is regulated for each species. Provided the diet is not deficient in polyunsaturated fat, it has minimal influence on a species' membrane fatty acid composition and likely also on it's maximum longevity. The exceptional longevity of Homo sapiens combined with the limited knowledge of the fatty acid composition of human tissues support the potential importance of mitochondrial membranes in determination of longevity.

Journal ArticleDOI
TL;DR: The present article reviews the current knowledge of chemical ecology of benthic marine invertebrates comprising communities along the Western Antarctic Peninsula (WAP), a region of Antarctica that is both physically and biologically distinct from the rest of the continent.
Abstract: Thirteen years ago in a review that appeared in the American Zoologist, we presented the first survey of the chemical and ecological bioactivity of Antarctic shallow-water marine invertebrates. In essence, we reported that despite theoretical predictions to the contrary the incidence of chemical defenses among sessile and sluggish Antarctic marine invertebrates was widespread. Since that time we and others have significantly expanded upon the base of knowledge of Antarctic marine invertebrates' chemical ecology, both from the perspective of examining marine invertebrates in new, distinct geographic provinces, as well as broadening the evaluation of the ecological significance of secondary metabolites. Importantly, many of these studies have been framed within established theoretical constructs, particularly the Optimal Defense Theory. In the present article, we review the current knowledge of chemical ecology of benthic marine invertebrates comprising communities along the Western Antarctic Peninsula (WAP), a region of Antarctica that is both physically and biologically distinct from the rest of the continent. Our overview indicates that, similar to other regions of Antarctica, anti-predator chemical defenses are widespread among species occurring along the WAP. In some groups, such as the sponges, the incidence of chemical defenses against predation is comparable to, or even slightly higher than, that found in tropical marine systems. While there is substantial knowledge of the chemical defenses of benthic marine invertebrates against predators, much less is known about chemical anti-foulants. The sole survey conducted to date suggests that secondary metabolites in benthic sponges are likely to be important in the prevention of fouling by benthic diatoms, yet generally lack activity against marine bacteria. Our understanding of the sensory ecology of Antarctic benthic marine invertebrates, despite its great potential, remains in its infancy. For example, along the WAP, community-level non-consumptive effects occur when amphipods chemically sense fish predators and respond by seeking refuge in chemically-defended macroalgae. Such interactions may be important in releasing amphipods from predation pressure and facilitating their unusually high abundances along the WAP. Moreover, recent studies on the sensory biology of the Antarctic keystone sea star Odontaster validus indicate that chemotactile-mediated interactions between conspecifics and other sympatric predatory sea stars may have significant ramifications in structuring community dynamics. Finally, from a global environmental perspective, understanding how chemical ecology structures marine benthic communities along the WAP must increasingly be viewed in the context of the dramatic impacts of rapid climatic change now occurring in this biogeographic region.

Journal ArticleDOI
TL;DR: The molecular phylogeny presented here will facilitate more robust study of phenotypic evolution in the Scyphozoa, including the evolution characters associated with mass occurrences of jellyfish.
Abstract: A stable phylogenetic hypothesis for families within jellyfish class Scyphozoa has been elusive. Reasons for the lack of resolution of scyphozoan familial relationships include a dearth of morphological characters that reliably distinguish taxa and incomplete taxonomic sampling in molecular studies. Here, we address the latter issue by using maximum likelihood and Bayesian methods to reconstruct the phylogenetic relationships among all 19 currently valid scyphozoan families, using sequence data from two nuclear genes: 18S and 28S rDNA. Consistent with prior morphological hypotheses, we find strong evidence for monophyly of subclass Discomedusae, order Coronatae, rhizostome suborder Kolpophorae and superfamilies Actinomyariae, Kampylomyariae, Krikomyariae, and Scapulatae. Eleven of the 19 currently recognized scyphozoan families are robustly monophyletic, and we suggest recognition of two new families pending further analyses. In contrast to long-standing morphological hypotheses, the phylogeny shows coronate family Nausithoidae, semaeostome family Cyaneidae, and rhizostome suborder Daktyliophorae to be nonmonophyletic. Our analyses neither strongly support nor strongly refute monophyly of order Rhizostomeae, superfamily Inscapulatae, and families Ulmaridae, Catostylidae, Lychnorhizidae, and Rhizostomatidae. These taxa, as well as familial relationships within Coronatae and within rhizostome superfamily Inscapulatae, remain unclear and may be resolved by additional genomic and taxonomic sampling. In addition to clarifying some historically difficult taxonomic questions and highlighting nodes in particular need of further attention, the molecular phylogeny presented here will facilitate more robust study of phenotypic evolution in the Scyphozoa, including the evolution characters associated with mass occurrences of jellyfish.

Journal ArticleDOI
TL;DR: Three major challenges facing comparativephysiology in the 21st century are expanded upon: vertical integration of physiological processes across organizational levels within or-ganisms, horizontal integration ofphysiological processes across organ-isms within ecosystems, and temporalintegration of physiological pro-cesses during evolutionary change.
Abstract: Schwenketal.(2009)providedanover-view of five major challenges in organ-ismal biology: (1) understanding theorganism’s role in organism–environ-ment linkages; (2) utilizing the func-tional diversity of organisms; (3)integrating living and physical systemsanalysis; (4) understanding howgenomes produce organisms; and (5)understanding how organisms walkthe tightrope between stability andchange. Subsequent ‘‘GrandChallenges’’ papers have expanded onthese topics from different viewpoints,including ecomechanics (Denny andHelmuth 2009), endocrinology(Denver et al. 2009), development ofadditional model organisms (Satterlieet al. 2009), and development oftheoretical and financial resources(Halanych and Goertzen 2009). This isthe sixth paper in the ‘‘GrandChallenges’’ series, which offers theview from comparative physiology.In this article, we expand upon threemajor challenges facing comparativephysiology in the 21st century: verticalintegration of physiological processesacross organizational levels within or-ganisms, horizontal integration ofphysiological processes across organ-isms within ecosystems, and temporalintegration of physiological pro-cesses during evolutionary change.‘‘Integration’’ is a key. It defines thescope of the challenges and must beconsidered in any solution. Reductiveand inductive approaches both havebeen used with great success in biology.The reductive approach employs a sim-plified system to study a complexprocess. There is no question thatsuch an approach has yielded a greaterunderstanding of the molecular mech-anismsofcellularprocesses.Theinduc-tive approach depends on observationto develop universal principles. CharlesDarwin, after all, used this approach todevelop the theory of natural selection.All too often these approaches areviewed as mutually exclusive, when, infact, they are complementary and areused, to varying extents, by most biol-ogists working today. Yet, we havefallen short of full integration acrossdisciplinesandlevelsofbiologicalorga-nization. A major impediment for fur-ther advancement has been thelimitations in tools and resources.However, recent technological ad-vances (e.g., systems biology) give usan opportunity to combine reductiveand inductive approaches to studyemergent properties (Boogerd et al.2007) and now allow us to entertain