scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Nanomedicine in 2011"


Journal ArticleDOI
TL;DR: This review is mainly to compare the therapeutic effect of current clinically approved liposome-based drugs with free drugs, and to also determine the clinical effect via liposomal variations in lipid composition.
Abstract: Research on liposome formulations has progressed from that on conventional vesicles to new generation liposomes, such as cationic liposomes, temperature sensitive liposomes, and virosomes, by modulating the formulation techniques and lipid composition. Many research papers focus on the correlation of blood circulation time and drug accumulation in target tissues with physicochemical properties of liposomal formulations, including particle size, membrane lamellarity, surface charge, permeability, encapsulation volume, shelf time, and release rate. This review is mainly to compare the therapeutic effect of current clinically approved liposome-based drugs with free drugs, and to also determine the clinical effect via liposomal variations in lipid composition. Furthermore, the major preclinical and clinical data related to the principal liposomal formulations are also summarized.

746 citations


Journal ArticleDOI
TL;DR: This paper reviews published research on chitosan nanoparticles, including its preparation methods, characteristics, modification, in vivo metabolic processes, and applications.
Abstract: Chitosan nanoparticles are good drug carriers because of their good biocompatibility and biodegradability, and can be readily modified. As a new drug delivery system, they have attracted increasing attention for their wide applications in, for example, loading protein drugs, gene drugs, and anticancer chemical drugs, and via various routes of administration including oral, nasal, intravenous, and ocular. This paper reviews published research on chitosan nanoparticles, including its preparation methods, characteristics, modification, in vivo metabolic processes, and applications.

568 citations


Journal ArticleDOI
TL;DR: Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects.
Abstract: The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA), a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects.

408 citations


Journal ArticleDOI
TL;DR: The in vivo toxicity of 5, 10, 30, and 60 nm PEG-coated gold nanoparticles in mice is presented, and it cannot be concluded that the smaller particles have greater toxicity.
Abstract: Background: Gold nanoparticle toxicity research is currently leading towards the in vivo experiment. Most toxicology data show that the surface chemistry and physical dimensions of gold nanoparticles play an important role in toxicity. Here, we present the in vivo toxicity of 5, 10, 30, and 60 nm PEG-coated gold nanoparticles in mice. Methods: Animal survival, weight, hematology, morphology, organ index, and biochemistry were characterized at a concentration of 4000 µg/kg over 28 days. Results: The PEG-coated gold particles did not cause an obvious decrease in body weight or appreciable toxicity even after their breakdown in vivo. Biodistribution results show that 5 nm and 10 nm particles accumulated in the liver and that 30 nm particles accumulated in the spleen, while the 60 nm particles did not accumulate to an appreciable extent in either organ. Transmission electron microscopic observations showed that the 5, 10, 30, and 60 nm particles located in the blood and bone marrow cells, and that the 5 and 60 nm particles aggregated preferentially in the blood cells. The increase in spleen index and thymus index shows that the immune system can be affected by these small nanoparticles. The 10 nm gold particles induced an increase in white blood cells, while the 5 nm and 30 nm particles induced a decrease in white blood cells and red blood cells. The biochemistry results show that the 10 nm and 60 nm PEG-coated gold nanoparticles caused a significant increase in alanine transaminase and aspartate transaminase levels, indicating slight damage to the liver. Conclusion: The toxicity of PEG-coated gold particles is complex, and it cannot be concluded that the smaller particles have greater toxicity. The toxicity of the 10 nm and 60 nm particles was obviously higher than that of the 5 nm and 30 nm particles. The metabolism of these particles and protection of the liver will be more important issues for medical applications of gold-based nanomaterials in future.

384 citations


Journal ArticleDOI
TL;DR: The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.
Abstract: Zinc oxide nanoparticles (ZnO-NPs) were synthesized via a solvothermal method in triethanolamine (TEA) media. TEA was utilized as a polymer agent to terminate the growth of ZnO-NPs. The ZnO-NPs were characterized by a number of techniques, including X-ray diffraction analysis, transition electron microscopy, and field emission electron microscopy. The ZnO-NPs prepared by the solvothermal process at 150°C for 18 hours exhibited a hexagonal (wurtzite) structure, with a crystalline size of 33 ± 2 nm, and particle size of 48 ± 7 nm. The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.

370 citations


Journal ArticleDOI
TL;DR: In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release, and the thickness of the blend nanofiber mats strongly influenced the initial release and rateof drug release.
Abstract: The aim of this study was to develop novel biomedicated nanofiber electrospun mats for controlled drug release, especially drug release directly to an injury site to accelerate wound healing. Nanofibers of poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), and a 50:50 composite blend, loaded with ciprofloxacin HCl (CipHCl), were successfully prepared by an electrospinning technique for the first time. The morphology and average diameter of the electrospun nanofibers were investigated by scanning electron microscopy. X-ray diffraction studies indicated an amorphous distribution of the drug inside the nanofiber blend. Introducing the drug into polymeric solutions significantly decreased solution viscosities as well as nanofiber diameter. In vitro drug release evaluations showed that both the kind of polymer and the amount of drug loaded greatly affected the degree of swelling, weight loss, and initial burst and rate of drug release. Blending PVA and PVAc exhibited a useful and convenient method for electrospinning in order to control the rate and period of drug release in wound healing applications. Also, the thickness of the blend nanofiber mats strongly influenced the initial release and rate of drug release.

349 citations


Journal ArticleDOI
TL;DR: The simplified Hummer’s method provides a facile approach for the preparation of large-area graphene oxide (GO), resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm2, respectively.
Abstract: Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ∼100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer's method from large graphite flakes (an average flake size of 500 µm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 µm and ∼8000 µm 2 , respectively. The simplified Hummer's method provides a

345 citations


Journal ArticleDOI
TL;DR: Most metal oxide nanoparticles show toxic effects, but no toxic effects have been observed with biocompatible coatings, which will be reviewed in this article.
Abstract: Nanotechnology has wide applications in many fields, especially in the biological sciences and medicine. Nanomaterials are applied as coating materials or in treatment and diagnosis. Nanoparticles such as titania, zirconia, silver, diamonds, iron oxides, carbon nanotubes, and biodegradable polymers have been studied in diagnosis and treatment. Many of these nanoparticles may have toxic effects on cells. Many factors such as size, inherent properties, and surface chemistry may cause nanoparticle toxicity. There are methods for improving the performance and reducing toxicity of nanoparticles in medical design, such as biocompatible coating materials or biodegradable/biocompatible nanoparticles. Most metal oxide nanoparticles show toxic effects, but no toxic effects have been observed with biocompatible coatings. Biodegradable nanoparticles are also used in the efficient design of medical materials, which will be reviewed in this article.

325 citations


Journal ArticleDOI
TL;DR: The biomedical applications of CNTs are explored, with particular emphasis on their use as therapeutic platforms in oncology, amid the rapid advances in the development of nanotechnology-based materials.
Abstract: Cancer is a generic term that encompasses a group of diseases characterized by an uncontrolled proliferation of cells. There are over 200 different types of cancer, each of which gains its nomenclature according to the type of tissue the cell originates in. Many patients who succumb to cancer do not die as a result of the primary tumor, but because of the systemic effects of metastases on other regions away from the original site. One of the aims of cancer therapy is to prevent the metastatic process as early as possible. There are currently many therapies in clinical use, and recent advances in biotechnology lend credence to the potential of nanotechnology in the fight against cancer. Nanomaterials such as carbon nanotubes (CNTs), quantum dots, and dendrimers have unique properties that can be exploited for diagnostic purposes, thermal ablation, and drug delivery in cancer. CNTs are tubular materials with nanometer-sized diameters and axial symmetry, giving them unique properties that can be exploited in the diagnosis and treatment of cancer. In addition, CNTs have the potential to deliver drugs directly to targeted cells and tissues. Alongside the rapid advances in the development of nanotechnology-based materials, elucidating the toxicity of nanoparticles is also imperative. Hence, in this review, we seek to explore the biomedical applications of CNTs, with particular emphasis on their use as therapeutic platforms in oncology.

324 citations


Journal ArticleDOI
TL;DR: The objective of this work was to investigate the use of nanocrystalline cellulose (NCC) as a drug delivery excipient, and NCC crystallites, prepared by an acid hydrolysis method, were shown to have nanoscopic dimensions and exhibit a high degree of crystallinity.
Abstract: The objective of this work was to investigate the use of nanocrystalline cellulose (NCC) as a drug delivery excipient. NCC crystallites, prepared by an acid hydrolysis method, were shown to have nanoscopic dimensions and exhibit a high degree of crystallinity. These crystallites bound significant quantities of the water soluble, ionizable drugs tetratcycline and doxorubicin, which were released rapidly over a 1-day period. Cetyl trimethylammonium bromide (CTAB) was bound to the surface of NCC and increased the zeta potential in a concentration-dependent manner from −55 to 0 mV. NCC crystallites with CTAB-modified surfaces bound significant quantities of the hydrophobic anticancer drugs docetaxel, paclitaxel, and etoposide. These drugs were released in a controlled manner over a 2-day period. The NCC-CTAB complexes were found to bind to KU-7 cells, and evidence of cellular uptake was observed.

320 citations


Journal ArticleDOI
TL;DR: This is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles, and the characterized nanoparticles of M.Edule have potential for various medical and industrial applications.
Abstract: We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the growth of Staphylococcus aureus in the presence of selenium nanoparticles and found that the number of live bacteria also decreased in their experiments.
Abstract: Staphylococcus aureus is a key bacterium commonly found in numerous infections. S. aureus infections are difficult to treat due to their biofilm formation and documented antibiotic resistance. While selenium has been used for a wide range of applications including anticancer applications, the effects of selenium nanoparticles on microorganisms remain largely unknown to date. The objective of this in vitro study was thus to examine the growth of S. aureus in the presence of selenium nanoparticles. Results of this study provided the first evidence of strongly inhibited growth of S. aureus in the presence of selenium nanoparticles after 3, 4, and 5 hours at 7.8, 15.5, and 31 μg/mL. The percentage of live bacteria also decreased in the presence of selenium nanoparticles. Therefore, this study suggests that selenium nanoparticles may be used to effectively prevent and treat S. aureus infections and thus should be further studied for such applications.

Journal ArticleDOI
TL;DR: It is concluded that MHT proved to be efficient in most of the experiments, and that the improvement of the nanocomposites as well as the AMF equipment might contribute toward establishing MHT as a promising tool in the treatment of malignant gliomas.
Abstract: Gliomas are a group of heterogeneous primary central nervous system (CNS) tumors arising from the glial cells Malignant gliomas account for a majority of malignant primary CNS tumors and are associated with high morbidity and mortality Glioblastoma is the most frequent and malignant glioma, and despite the recent advances in diagnosis and new treatment options, its prognosis remains dismal New opportunities for the development of effective therapies for malignant gliomas are urgently needed Magnetic hyperthermia (MHT), which consists of heat generation in the region of the tumor through the application of magnetic nanoparticles subjected to an alternating magnetic field (AMF), has shown positive results in both preclinical and clinical assays The aim of this review is to assess the relevance of hyperthermia induced by magnetic nanoparticles in the treatment of gliomas and to note the possible variations of the technique and its implication on the effectiveness of the treatment We performed an electronic search in the literature from January 1990 to October 2010, in various databases, and after application of the inclusion criteria we obtained a total of 15 articles In vitro studies and studies using animal models showed that MHT was effective in the promotion of tumor cell death and reduction of tumor mass or increase in survival Two clinical studies showed that MHT could be applied safely and with few side effects Some studies suggested that mechanisms of cell death, such as apoptosis, necrosis, and antitumor immune response were triggered by MHT Based on these data, we could conclude that MHT proved to be efficient in most of the experiments, and that the improvement of the nanocomposites as well as the AMF equipment might contribute toward establishing MHT as a promising tool in the treatment of malignant gliomas

Journal ArticleDOI
TL;DR: In vivo the feasibility of cancer diagnosis based on molecular markers rather than on anatomical structures is demonstrated, using clinical computed tomography, and it is shown that active tumor targeting is more efficient and specific than passive targeting.
Abstract: In recent years, advances in molecular biology and cancer research have led to the identification of sensitive and specific biomarkers that associate with various types of cancer. However, in vivo cancer detection methods with computed tomography, based on tracing and detection of these molecular cancer markers, are unavailable today. This paper demonstrates in vivo the feasibility of cancer diagnosis based on molecular markers rather than on anatomical structures, using clinical computed tomography. Anti-epidermal growth factor receptor conjugated gold nanoparticles (30 nm) were intravenously injected into nude mice implanted with human squamous cell carcinoma head and neck cancer. The results clearly demonstrate that a small tumor, which is currently undetectable through anatomical computed tomography, is enhanced and becomes clearly visible by the molecularly-targeted gold nanoparticles. It is further shown that active tumor targeting is more efficient and specific than passive targeting. This noninvasive and nonionizing molecular cancer imaging tool can facilitate early cancer detection and can provide researchers with a new technique to investigate in vivo the expression and activity of cancer-related biomarkers and molecular processes.

Journal ArticleDOI
TL;DR: A thermosensitive hydrogel with embedded liposome is a promising carrier for hydrophobic anticancer agents, to be used in parenteral formulations for treating local cancers.
Abstract: Purpose To develop an in situ gel system comprising liposome-containing paclitaxel (PTX) dispersed within the thermoreversible gel (Pluronic® F127 gel) for controlled release and improved antitumor drug efficiency.

Journal ArticleDOI
TL;DR: The mechanisms and applications of various nanoparticles explored for improving bacteria and biofilm penetration, generating reactive oxygen species, and killing bacteria are examined, potentially providing a novel method for fighting infections that is nondrug related.
Abstract: The expansion of bacterial antibiotic resistance is a growing problem today. When medical devices are inserted into the body, it becomes especially difficult for the body to clear robustly adherent antibiotic-resistant biofilm infections. In addition, concerns about the spread of bacterial genetic tolerance to antibiotics, such as that found in multiple drug-resistant Staphylococcus aureus (MRSA), have significantly increased of late. As a growing direction in biomaterial design, nanomaterials (materials with at least one dimension less than 100 nm) may potentially prevent bacterial functions that lead to infections. As a first step in this direction, various nanoparticles have been explored for improving bacteria and biofilm penetration, generating reactive oxygen species, and killing bacteria, potentially providing a novel method for fighting infections that is nondrug related. This review article will first examine in detail the mechanisms and applications of some of these nanoparticles, then follow with some recent material designs utilizing nanotechnology that are centered on fighting medical device infections.

Journal ArticleDOI
Yu-Lan Hu1, Wang Qi, Feng Han, Jian-Zhong Shao, Jian-Qing Gao1 
TL;DR: Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent, and suggest that the toxicity of biodegradable nanocarriers such as chitotoxicity must be addressed, especially considering the in vivo distribution of these nanoscaled particles.
Abstract: Background Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier. Methods Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control. Results Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles. Conclusion Our results add new insights into the potential toxicity of nanoparticles produced by biodegradable materials, and may help us to understand better the nanotoxicity of drug delivery carriers.

Journal ArticleDOI
TL;DR: The results indicated that the chloramphenicol-loaded SLN could potentially be exploited as a delivery system with improved drug entrapment efficiency and controlled drug release.
Abstract: The purpose of the present study was to optimize a solid lipid nanoparticle (SLN) of chloramphenicol by investigating the relationship between design factors and experimental data using response surface methodology. A Box-Behnken design was constructed using solid lipid (X(1)), surfactant (X(2)), and drug/lipid ratio (X(3)) level as independent factors. SLN was successfully prepared by a modified method of melt-emulsion ultrasonication and low temperature-solidification technique using glyceryl monostearate as the solid lipid, and poloxamer 188 as the surfactant. The dependent variables were entrapment efficiency (EE), drug loading (DL), and turbidity. Properties of SLN such as the morphology, particle size, zeta potential, EE, DL, and drug release behavior were investigated, respectively. As a result, the nanoparticle designed showed nearly spherical particles with a mean particle size of 248 nm. The polydispersity index of particle size was 0.277 ± 0.058 and zeta potential was -8.74 mV. The EE (%) and DL (%) could reach up to 83.29% ± 1.23% and 10.11% ± 2.02%, respectively. In vitro release studies showed a burst release at the initial stage followed by a prolonged release of chloramphenicol from SLN up to 48 hours. The release kinetics of the optimized formulation best fitted the Peppas-Korsmeyer model. These results indicated that the chloramphenicol-loaded SLN could potentially be exploited as a delivery system with improved drug entrapment efficiency and controlled drug release.

Journal ArticleDOI
TL;DR: In vivo exploration suggests that although γ-Fe2O3 nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected.
Abstract: Nanotechnology is an exciting field of investigation for the development of new treatments for many human diseases However, it is necessary to assess the biocompatibility of nanoparticles in vitro and in vivo before considering clinical applications Our characterization of polyol-produced maghemite γ-Fe2O3 nanoparticles showed high structural quality The particles showed a homogeneous spherical size around 10 nm and could form aggregates depending on the dispersion conditions Such nanoparticles were efficiently taken up in vitro by human endothelial cells, which represent the first biological barrier to nanoparticles in vivo However, γ-Fe2O3 can cause cell death within 24 hours of exposure, most likely through oxidative stress Further in vivo exploration suggests that although γ-Fe2O3 nanoparticles are rapidly cleared through the urine, they can lead to toxicity in the liver, kidneys and lungs, while the brain and heart remain unaffected In conclusion, γ-Fe2O3 could exhibit harmful properties and therefore surface coating, cellular targeting, and local exposure should be considered before developing clinical applications

Journal ArticleDOI
TL;DR: Results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag+ and are proposed to be related to the exhaustion of antioxidant capacity.
Abstract: Background The focus of this study is on the antibacterial properties of silver nanoparticles embedded within a zeolite membrane (AgNP-ZM). Methods and results These membranes were effective in killing Escherichia coli and were bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria Bertani (LB) broth and isolated from physical contact with the membrane were also killed. Elemental analysis indicated slow release of Ag(+) from the AgNP-ZM into the LB broth. The E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was correlated with decreased release of silver ions with each use of the support. Gene expression microarrays revealed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction, and ATPase pumps in response to silver ions released from AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thioredoxin decreased with each support use, reflecting the lower amounts of Ag(+) released from the membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaustion of antioxidant capacity. Conclusion These results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag(+).

Journal ArticleDOI
TL;DR: It was found that the particle size of Ag-NPs obtained in gelatin solutions is smaller than in gelatin–glucose solutions, which can be related to the rate of reduction reaction.
Abstract: Silver nanoparticles (Ag-NPs) have been successfully prepared with simple and “green” synthesis method by reducing Ag+ ions in aqueous gelatin media with and in the absence of glucose as a reducing agent. In this study, gelatin was used for the first time as a reducing and stabilizing agent. The effect of temperature on particle size of Ag-NPs was also studied. It was found that with increasing temperature the size of nanoparticles is decreased. It was found that the particle size of Ag-NPs obtained in gelatin solutions is smaller than in gelatin–glucose solutions, which can be related to the rate of reduction reaction. X-ray diffraction, ultraviolet-visible spectra, transmission electron microscopy, and atomic force microscopy revealed the formation of monodispersed Ag-NPs with a narrow particle size distribution.

Journal ArticleDOI
TL;DR: The increase in c value is an important factor for increasing the antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing these nanoparticles for this purpose.
Abstract: Nanoparticles of zinc oxide (ZnO) are increasingly recognized for their utility in biological applications. In this study, the high-energy ball milling (HEBM) technique was used to produce nanoparticles of ZnO from its microcrystalline powder. Four samples were ball milled for 2, 10, 20, and 50 hours, respectively. The structural and optical modifications induced in the 'as synthesized' nanomaterials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and photoluminescence emission spectra (PL). SEM and TEM results show a gradual decrease in particle size from around 600 to ∼30 nm, with increased milling time. The initial microstructures had random shapes, while the final shape became quite spherical. XRD analysis showed ZnO in a hexagonal structure, broadening in the diffracted peaks and going from larger to smaller particles along with a relaxation in the lattice constant c. The value of c was found to increase from 5.204 to 5.217 A with a decrease in particle size (600 to ∼30 nm). PL result showed a new band at around 365 nm, whose intensity is found to increase as the particles size decreases. These remarkable structural and optical modifications induced in ZnO nanoparticles might prove useful for various applications. The increase in c value is an important factor for increasing the antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing these nanoparticles for this purpose.

Journal ArticleDOI
TL;DR: Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin, and the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quERCetin in skin.
Abstract: Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin.

Journal ArticleDOI
TL;DR: Determination of the antileishmanial effects of Ag-NPs is very important for the further development of new compounds containing nanoparticles in leishmaniasis treatment, and this effect was more significant in the presence of UV light.
Abstract: Leishmaniasis is a protozoan vector-borne disease and is one of the biggest health problems of the world. Antileishmanial drugs have disadvantages such as toxicity and the recent development of resistance. One of the best-known mechanisms of the antibacterial effects of silver nanoparticles (Ag-NPs) is the production of reactive oxygen species to which Leishmania parasites are very sensitive. So far no information about the effects of Ag-NPs on Leishmania tropica parasites, the causative agent of leishmaniasis, exists in the literature. The aim of this study was to investigate the effects of Ag-NPs on biological parameters of L. tropica such as morphology, metabolic activity, proliferation, infectivity, and survival in host cells, in vitro. Consequently, parasite morphology and infectivity were impaired in comparison with the control. Also, enhanced effects of Ag-NPs were demonstrated on the morphology and infectivity of parasites under ultraviolet (UV) light. Ag-NPs demonstrated significant antileishmanial effects by inhibiting the proliferation and metabolic activity of promastigotes by 1.5- to threefold, respectively, in the dark, and 2- to 6.5-fold, respectively, under UV light. Of note, Ag-NPs inhibited the survival of amastigotes in host cells, and this effect was more significant in the presence of UV light. Thus, for the first time the antileishmanial effects of Ag-NPs on L. tropica parasites were demonstrated along with the enhanced antimicrobial activity of Ag-NPs under UV light. Determination of the antileishmanial effects of Ag-NPs is very important for the further development of new compounds containing nanoparticles in leishmaniasis treatment.

Journal ArticleDOI
TL;DR: In vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines.
Abstract: Background Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells.

Journal ArticleDOI
TL;DR: The antibody-conjugated gold particles synthesized in this study could successfully differentiate normal cell populations from cancerous cells and were found to bind specifically to the surface antigens of the cancer cells.
Abstract: BACKGROUND Nanomaterials are considered to be the pre-eminent component of the rapidly advancing field of nanotechnology. However, developments in the biologically inspired synthesis of nanoparticles are still in their infancy and consequently attracting the attention of material scientists throughout the world. Keeping in mind the fact that microorganism-assisted synthesis of nanoparticles is a safe and economically viable prospect, in the current study we report Candida albicans-mediated biological synthesis of gold nanoparticles. METHODS AND RESULTS Transmission electron microscopy, atomic force microscopy, and various spectrophotometric analyses were performed to characterize the gold nanoparticles. The morphology of the synthesized gold particles depended on the abundance of C. albicans cytosolic extract. Transmission electron microscopy, nanophox particle analysis, and atomic force microscopy revealed the size of spherical gold nanoparticles to be in the range of 20-40 nm and nonspherical gold particles were found to be 60-80 nm. We also evaluated the potential of biogenic gold nanoparticles to probe liver cancer cells by conjugating them with liver cancer cell surface-specific antibodies. The antibody-conjugated gold particles were found to bind specifically to the surface antigens of the cancer cells. CONCLUSION The antibody-conjugated gold particles synthesized in this study could successfully differentiate normal cell populations from cancerous cells.

Journal ArticleDOI
TL;DR: Guided filopodia protrusions of MG63 on the Hydrogel were observed on the third day of cell culture, demonstrating compatibility of the graphene hydrogel structure for bioapplications.
Abstract: BACKGROUND: Three-dimensional assembly of graphene hydrogel is rapidly attracting the interest of researchers because of its wide range of applications in energy storage, electronics, electrochemistry, and waste water treatment. Information on the use of graphene hydrogel for biological purposes is lacking, so we conducted a preliminary study to determine the suitability of graphene hydrogel as a substrate for cell growth, which could potentially be used as building blocks for biomolecules and tissue engineering applications. METHODS: A three-dimensional structure of graphene hydrogel was prepared via a simple hydrothermal method using two-dimensional large-area graphene oxide nanosheets as a precursor. RESULTS: The concentration and lateral size of the graphene oxide nanosheets influenced the structure of the hydrogel. With larger-area graphene oxide nanosheets, the graphene hydrogel could be formed at a lower concentration. X-ray diffraction patterns revealed that the oxide functional groups on the graphene oxide nanosheets were reduced after hydrothermal treatment. The three-dimensional graphene hydrogel matrix was used as a scaffold for proliferation of a MG63 cell line. CONCLUSION: Guided filopodia protrusions of MG63 on the hydrogel were observed on the third day of cell culture, demonstrating compatibility of the graphene hydrogel structure for bioapplications.

Journal ArticleDOI
TL;DR: It is suggested that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest and it is plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblast.
Abstract: This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts.

Journal ArticleDOI
TL;DR: This work proposes a simple confocal laser scanning microscopy procedure to rapidly and easily detect the liposomal membrane and aims to compare the results obtained by atomic force microscopy, environmental scanning electron microscopes, transmission electron microscope, and confocal Laser scanning microscope to point out the limits and advantages of these applications in the evaluation of vesicular systems.
Abstract: An outstanding aspect of pharmaceutical nanotechnology lies in the characterization of nanocarriers for targeting of drugs and other bioactive agents. The development of microscopic techniques has made the study of the surface and systems architecture more attractive. In the field of pharmaceutical nanosystems, researchers have collected vital information on size, stability, and bilayer organization through the microscopic characterization of liposomes. This paper aims to compare the results obtained by atomic force microscopy, environmental scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy to point out the limits and advantages of these applications in the evaluation of vesicular systems. Besides this comparative aim, our work proposes a simple confocal laser scanning microscopy procedure to rapidly and easily detect the liposomal membrane.

Journal ArticleDOI
TL;DR: It is indicated that polysorbate-80 coated PBCA nanoparticles could be a feasible carrier for temozolomide delivery to the brain and may improve on targeted therapy for malignant brain tumors in the future.
Abstract: Natural Science Foundation of Fujian Province of China; Xiamen Science and Technology Bureau of China