scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Lightwave Technology in 2009"


Journal ArticleDOI
TL;DR: In this paper, the authors give a tutorial overview of OFDM and highlight the aspects that are likely to be important in optical applications, and discuss the constraints imposed by single mode optical fiber, multimode optical fiber and optical wireless.
Abstract: Orthogonal frequency division multiplexing (OFDM) is a modulation technique which is now used in most new and emerging broadband wired and wireless communication systems because it is an effective solution to intersymbol interference caused by a dispersive channel. Very recently a number of researchers have shown that OFDM is also a promising technology for optical communications. This paper gives a tutorial overview of OFDM highlighting the aspects that are likely to be important in optical applications. To achieve good performance in optical systems OFDM must be adapted in various ways. The constraints imposed by single mode optical fiber, multimode optical fiber and optical wireless are discussed and the new forms of optical OFDM which have been developed are outlined. The main drawbacks of OFDM are its high peak to average power ratio and its sensitivity to phase noise and frequency offset. The impairments that these cause are described and their implications for optical systems discussed.

1,761 citations


Journal Article
TL;DR: In this paper, techniques developed in the last few years in microwave photonics are reviewed with an emphasis on the systems architectures for photonic generation and processing of microwave signals, photonic true-time delay beamforming, radio-over-fiber systems, and photonic analog-to-digital conversion.
Abstract: Broadband and low loss capability of photonics has led to an ever-increasing interest in its use for the generation, processing, control and distribution of microwave and millimeter-wave signals for applications such as broadband wireless access networks, sensor networks, radar, satellite communitarians, instrumentation and warfare systems. In this tutorial, techniques developed in the last few years in microwave photonics are reviewed with an emphasis on the systems architectures for photonic generation and processing of microwave signals, photonic true-time delay beamforming, radio-over-fiber systems, and photonic analog-to-digital conversion. Challenges in system implementation for practical applications and new areas of research in microwave photonics are also discussed.

1,332 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a novel digital carrier recovery algorithm for arbitrary M-ary quadrature amplitude modulation (M-QAM) constellations in an intradyne coherent optical receiver.
Abstract: This paper presents a novel digital feedforward carrier recovery algorithm for arbitrary M-ary quadrature amplitude modulation (M-QAM) constellations in an intradyne coherent optical receiver. The approach does not contain any feedback loop and is therefore highly tolerant against laser phase noise. This is crucial, especially for higher order QAM constellations, which inherently have a smaller phase noise tolerance due to the lower spacing between adjacent constellation points. In addition to the mathematical description of the proposed carrier recovery algorithm also a possible hardware-efficient implementation in a parallelized system is presented and the performance of the algorithm is evaluated by Monte Carlo simulations for square 4-QAM (QPSK), 16-QAM, 64-QAM, and 256-QAM. For the simulations ASE noise and laser phase noise are considered as well as analog-to-digital converter (ADC) and internal resolution effects. For a 1 dB penalty at BER = 10-3, linewidth times symbol duration products of 4.1 x 10-4 (4-QAM), 1.4 x 10-4 (16-QAM), 4.0 x 10-5 (64-QAM) and 8.0 x 10-6 (256-QAM) are tolerable.

976 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a network-based model of power consumption in optical IP networks and use this model to estimate the energy consumption of the Internet, including the core, metro and edge, access and video distribution networks, and take into account energy consumption in switching and transmission equipment.
Abstract: As community concerns about global energy consumption grow, the power consumption of the Internet is becoming an issue of increasing importance. In this paper, we present a network-based model of power consumption in optical IP networks and use this model to estimate the energy consumption of the Internet. The model includes the core, metro and edge, access and video distribution networks, and takes into account energy consumption in switching and transmission equipment. We include a number of access technologies, including digital subscriber line with ADSL2+, fiber to the home using passive optical networks, fiber to the node combined with very high-speed digital subscriber line and point-to-point optical systems. In addition to estimating the power consumption of today's Internet, we make predictions of power consumption in a future higher capacity Internet using estimates of improvements in efficiency in coming generations of network equipment. We estimate that the Internet currently consumes about 0.4% of electricity consumption in broadband-enabled countries. While the energy efficiency of network equipment will improve, and savings can be made by employing optical bypass and multicast, the power consumption of the Internet could approach 1% of electricity consumption as access rates increase. The energy consumption per bit of data on the Internet is around 75\bm muJ at low access rates and decreases to around 2-4 \bm muJ at an access rate of 100 Mb/s.

523 citations


Journal ArticleDOI
TL;DR: In this paper, the error performance of the FSO using a subcarrier intensity modulation (SIM) based on a binary phase shift keying (BPSK) scheme in a clear but turbulent atmosphere is presented.
Abstract: Free-space optical communications (FSO) propagated over a clear atmosphere suffers from irradiance fluctuation caused by small but random atmospheric temperature fluctuations. This results in decreased signal-to-noise ratio (SNR) and consequently impaired performance. In this paper, the error performance of the FSO using a subcarrier intensity modulation (SIM) based on a binary phase shift keying (BPSK) scheme in a clear but turbulent atmosphere is presented. To evaluate the system error performance in turbulence regimes from weak to strong, the probability density function (pdf) of the received irradiance after traversing the atmosphere is modelled using the gamma-gamma distribution while the negative exponential distribution is used to model turbulence in the saturation region and beyond. The effect of turbulence induced irradiance fluctuation is mitigated using spatial diversity at the receiver. With reference to the single photodetector case, up to 12 dB gain in the electrical SNR is predicted with two direct detection PIN photodetectors in strong atmospheric turbulence.

510 citations


Journal ArticleDOI
TL;DR: In this paper, the error performance of an heterodyne differential phase-shift keying (DPSK) optical wireless (OW) communication system operating under various intensity fluctuations conditions is investigated.
Abstract: We study the error performance of an heterodyne differential phase-shift keying (DPSK) optical wireless (OW) communication system operating under various intensity fluctuations conditions. Specifically, it is assumed that the propagating signal suffers from the combined effects of atmospheric turbulence-induced fading, misalignment fading (i.e., pointing errors) and path-loss. Novel closed-form expressions for the statistics of the random attenuation of the propagation channel are derived and the bit-error rate (BER) performance is investigated for all the above fading effects. Numerical results are provided to evaluate the error performance of OW systems with the presence of atmospheric turbulence and/or misalignment. Moreover, nonlinear optimization is also considered to find the optimum beamwidth that achieves the minimum BER for a given signal-to-noise ratio value.

386 citations


Journal ArticleDOI
TL;DR: In this paper, a 24-level format and an 8-level QPSK format were proposed for coherent optical communication systems, respectively, an extension and a subset of the commonly used 16-level dual-polarization (QPSK) format.
Abstract: Coherent optical transmission systems have a four-dimensional (4-D) signal space (two quadratures in two polarizations). These four dimensions can be used to create modulation formats that have a better power efficiency (higher sensitivity) than the conventional binary phase shift keying/quadrature phase shift keying (BPSK/QPSK) signals. Several examples are given, with some emphasis on a 24-level format and an 8-level format, including descriptions of how they can be realized and expressions for their symbol and bit error probabilities. These formats are, respectively, an extension and a subset of the commonly used 16-level dual-polarization QPSK format. Sphere packing simulations in 2, 3, and 4 dimensions, up to 32 levels, are used to verify their optimality. The numerical results, as the number of levels increases, are shown to agree with lattice-theoretical results. Finally, we point out that the use of these constellations will lead to improved fundamental sensitivity limits for optical communication systems, and they may also be relevant as a way of reducing power demands and/or nonlinear influence.

379 citations


Journal ArticleDOI
TL;DR: In this article, a coherent optical time-domain reflectometer (OTDR) with a precisely frequency-controlled light source was used to measure distributed strain and temperature in an 8 km-long fiber with a resolution of 0.01degC and a spatial resolution of one meter.
Abstract: We describe a novel fiber-optic technique for measuring distributed strain and temperature that uses a coherent optical time-domain reflectometer (OTDR) with a precisely frequency-controlled light source. Using this technique, we achieved temperature measurements in an 8-km-long fiber with a resolution of 0.01degC and a spatial resolution of one meter. This temperature resolution is two orders of magnitude better than that provided by the Brillouin based sensing technique.

329 citations


Journal ArticleDOI
TL;DR: This paper presents a new and fast algorithm to perform blind adaptive CD compensation through frequency-domain equalization and proposes an XPM-mitigating carrier phase recovery as an extension of the standard Viterbi-Viterbi algorithm.
Abstract: In this paper, we outline the design of signal processing (DSP) algorithms with blind estimation for 100-G coherent optical polarization-diversity receivers in single-carrier systems. As main degrading optical propagation effects, we considered chromatic dispersion (CD), polarization-mode dispersion (PMD), polarization-dependent loss (PDL), and cross-phase modulation (XPM). In the context of this work, we developed algorithms to increase the robustness of the single DSP receiver modules against the aforesaid propagation effects. In particular, we first present a new and fast algorithm to perform blind adaptive CD compensation through frequency-domain equalization. This low complexity equalizer component inherits a highly precise estimation of residual dispersion independent from previous or subsequent blocks. Next, we introduce an original dispersion-tolerant timing recovery and illustrate the derivation of blind polarization demultiplexing, capable to operate also in condition of high PDL. At last, we propose an XPM-mitigating carrier phase recovery as an extension of the standard Viterbi-Viterbi algorithm.

316 citations


Journal ArticleDOI
TL;DR: In this article, the performance of polarization multiplexed (or dual-polarization) quadrature phase-shift keying at 40 and 100 Gb/s was investigated.
Abstract: The emergence of capable semiconductor processes has allowed digital signal processing to extend the application range of high-capacity optical systems. We report the performance of polarization multiplexed (or dual-polarization) quadrature phase-shift keying at 40 and 100 Gb/s.

314 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated blind equalization and carrier phase recovery in a simulated 14 Gbaud 16-QAM optical coherent system and showed that the RDE algorithm can compensate up to 1000 ps/nm of CD in the system with performances comparable to the decision-directed equalizer.
Abstract: Blind equalization and carrier phase recovery in a simulated 14 Gbaud 16-QAM optical coherent system are investigated. Equalization techniques to compensate for linear transmission impairments are presented using the constant modulus algorithm (CMA), the recursive least-squares (RLS)-CMA, and the radius directed equalization (RDE). With 7 T/2-spaced taps, the RDE and the RLS-CMA can compensate up to 1000 ps/nm of CD in the 16-QAM coherent system with performances comparable to the decision-directed (DD) equalizer. We show that the RDE is a promising technique for blind equalization in a 16-QAM coherent system with lower complexity than the RLS-CMA. Blind carrier phase recovery is investigated in a decision-directed-mode. We show that the blind carrier phase recovery algorithm can recover the Square-16-QAM constellation for laser beat linewidths of DeltanuTs ~ 10-4 in a polarization-multiplexed (POLMUX) 16-QAM coherent system with the RDE algorithm giving better overall performance than the CMA when compensating for CD and differential group delay (DGD). Finally, the dynamical characteristics of the equalizers to track endless polarization rotations are discussed. With the adaptation parameters optimized, the equalizers can track angular rate of rotation ~ 105 rad/s.

Journal ArticleDOI
TL;DR: In this article, the phase estimation methods are numerically modeled: the maximum a posteriori (MAP) phase estimate, decision directed estimate, power law-Wiener filter estimate and power law PLL estimate.
Abstract: The advent of digital signal processing (DSP) to optical coherent detection means that more phase estimation options are available, compared to the earlier generation where phase-locked loops (PLLs) were invariably deployed in synchronous coherent receivers. Several phase estimation methods are numerically modeled: the maximum a posteriori (MAP) phase estimate, decision directed estimate, power law-Wiener filter estimate and power law-PLL estimate. An asynchronous coherent detection case is also modeled. The phase estimates are evaluated with respect to their tolerance of finite laser linewidth and their suitability for implementation in a parallel digital processor. Laser phase noise causes transmission system performance to be degraded by excess bit errors and cycle slips. The optimal phase estimate is the MAP estimate, and it is also included as a baseline. The power law-Wiener filter phase estimate is found to perform only marginally worse than the MAP estimate. It must be recast using a look-ahead computation to be implemented in a parallel digital processor, and the impact is investigated of the increase in the number of computations required. Differential logical detection is often used to reduce the impact of cycle slip events, and the implications of this operation on the bit error rate are studied. It is found that by choosing the correct FEC scheme differential logical detection does not increase the Q-factor penalty.

Journal ArticleDOI
TL;DR: In this paper, a tutorial reviewing research and development performed over the last few years to extend the reach of passive optical networks using technology such as optical amplifiers is presented, which is a good starting point for our work.
Abstract: This paper is a tutorial reviewing research and development performed over the last few years to extend the reach of passive optical networks using technology such as optical amplifiers.

Journal ArticleDOI
TL;DR: In this paper, optical multi-band orthogonal frequency division multiplexing (OFDM) was used to reduce the required bandwidth of the digital-to-analogue/ analogue-to digital converters and the required cyclic prefix.
Abstract: We discuss optical multi-band orthogonal frequency division multiplexing (OFDM) and show that by using multiple parallel OFDM bands, the required bandwidth of the digital-to-analogue/ analogue-to-digital converters and the required cyclic prefix can significantly be reduced. With the help of four OFDM bands and polarization division multiplexing (PDM) we report continuously detectable transmission of 10 times121.9-Gb/s (112.6-Gb/s without OFDM overhead) at 50-GHz channel spacing over 1,000-km standard single mode fiber (SSMF) without any inline dispersion compensation. In this experiment 8 QAM subcarrier modulation is used which confines the spectrum of the 121.9 Gb/s PDM-OFDM signal within a 22.8 GHz optical bandwidth. Moreover, we propose a digital signal processing method to reduce the matching requirements for the wideband transmitter IQ mixer structures required for PDM-OFDM.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive study of the strain and temperature-sensing characteristics of singlemode-multimode-singlemode (SMS) structures based on the modal interference of guided modes of graded index multimode fiber (MMF) section spliced in between two single-mode fibers was carried out.
Abstract: We present a comprehensive study of the strain and temperature-sensing characteristics of single-mode-multimode-single-mode (SMS) structures based on the modal interference of guided modes of graded index multimode fiber (MMF) section spliced in between two single-mode fibers. A detailed theoretical study of the structures in terms of the refractive index distribution, effect of dopant and their concentrations, and the variation of core diameter has been carried out. Our study shows that for the SMS structure with a GeO2-doped MMF there exists a critical wavelength on either side of which the spectrum shows opposite spectral shift with a change in temperature/strain, whereas for structures with a P2O5-doped MMF it shows monotonic red shift with increasing temperature/strain. It has been found that the critical wavelength shifts toward higher wavelengths with decreasing ldquoqrdquo value/doping concentration. Using different MMFs, both the red and blue spectral shifts have been observed experimentally. It has also been found that the SMS structure has higher sensitivity toward this critical wavelength. The study should find application in designing strain-insensitive high-sensitive temperature sensors or vice versa.

Journal ArticleDOI
TL;DR: In this article, the authors review technologies and architectures for WDM optical IP networks from the viewpoint of capital expenditure and network energy consumption, and show how requirements of low cost and low energy consumption can influence the choice of switching technologies as well as the overall network architecture.
Abstract: We review technologies and architectures for WDM optical IP networks from the viewpoint of capital expenditure and network energy consumption. We show how requirements of low cost and low energy consumption can influence the choice of switching technologies as well as the overall network architecture.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the suitability of high resolution optical lithography and dry etch processes for mass production of photonic integrated circuits, and demonstrate a propagation loss of 2.7 dB/cm for 500-nm photonic wire and an excess bending loss of 0.013 dB/90deg bend of 5mum radius.
Abstract: High-index contrast silicon-on-insulator technology enables wavelength-scale compact photonic circuits. We report fabrication of photonic circuits in silicon-on-insulator using complementary metal-oxide-semiconductor processing technology. By switching from advanced optical lithography at 248 to 193 nm, combined with improved dry etching, a substantial improvement in process window, linearity, and proximity effect is achieved. With the developed fabrication process, propagation and bending loss of photonic wires were characterized. Measurements indicate a propagation loss of 2.7 dB/cm for 500-nm photonic wire and an excess bending loss of 0.013 dB/90deg bend of 5-mum radius. Through this paper, we demonstrate the suitability of high resolution optical lithography and dry etch processes for mass production of photonic integrated circuits.

Journal ArticleDOI
TL;DR: An LDPC-coded turbo-equalizer as a candidate for dealing simultaneously with fiber nonlinearities, PMD, and residual chromatic dispersion and how to combine multilevel modulation and channel coding optimally by using coded modulation are described.
Abstract: Codes on graphs of interest for next generation forward error correction (FEC) in high-speed optical networks, namely turbo codes and low-density parity-check (LDPC) codes, are described in this invited paper. We describe both binary and nonbinary LDPC codes, their design, and decoding. We also discuss an FPGA implementation of decoders for binary LDPC codes. We then explain how to combine multilevel modulation and channel coding optimally by using coded modulation. Also, we describe an LDPC-coded turbo-equalizer as a candidate for dealing simultaneously with fiber nonlinearities, PMD, and residual chromatic dispersion.

Journal ArticleDOI
TL;DR: The fabrication, materials, properties and applications of microstructured polymer optical fibers are reviewed and an outline of the contribution to the wider field of microStructured fibers is presented.
Abstract: The fabrication, materials, properties and applications of microstructured polymer optical fibers are reviewed. Microstructured polymer optical fibers formed the basis of extensive work on the physics of microstructured fibers, and an outline of the contribution to the wider field of microstructured fibers is also presented.

Journal ArticleDOI
TL;DR: This work extracts closed form mathematical expression for the evaluation of the average (ergodic) capacity of such a system, using the log-normal and gamma-gamma distribution, in order to model the atmospheric turbulence conditions and to study the influence of the above parameters on it.
Abstract: The optical wireless communication systems are rapidly gaining popularity as effective means of transferring data at high rates over short distances. These systems facilitate rapidly deployable, lightweight, high-capacity communication without licensing fees and tariffs. On the other hand, the performance of this new technology depends strongly on the atmospheric conditions and the parameters of the link such as the length and the operation wavelength. In this work, we extract closed form mathematical expression for the evaluation of the average (ergodic) capacity of such a system, using the log-normal and gamma-gamma distribution, in order to model the atmospheric turbulence conditions and we study the influence of the above parameters on it.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed coherent optical single carrier transmission (COSC) using overlap frequency domain equalization (OFDE) for the chromatic dispersion (CD) compensation.
Abstract: In this paper, we present coherent optical single carrier transmission (COSC) using overlap frequency domain equalization (OFDE) for the chromatic dispersion (CD) compensation. Residual inter-symbol interference is suppressed by time domain equalization with small tap size. In single polarization transmission, 25-Gb/s COSC transmission with OFDE is demonstrated over 800 km to 4320 km of single-mode fiber (SMF) without optical dispersion compensation. The measured results show that the proposed configuration improves the transmission performance by setting adequate overlapped size of FFT windows and that it is suitable for long-haul optical communication systems.

Journal ArticleDOI
TL;DR: In this paper, the authors present the mechanisms and models of light guidance in solid-core photonic bandgap fibers (SC-PBGF), and how the guidance properties are sensitive to the refractive index of the infiltrated fluid.
Abstract: We review the field of fluid-filled solid-core photonic bandgap fibers (SC-PBGF): we present the mechanisms and models of light guidance in these fibers, and how the guidance properties are sensitive to the refractive index of the infiltrated fluid. We discuss how this sensitivity can be used for creating tunable devices such as filters, delay lines and tunable non-linear pulse propagation experiments. We review refractive index sensors based on SC-PBGFs, including band edge sensing, SC-PBGF based long period grating sensing and new results on selectively filled SC-PBGFs which are the most sensitive microstructured fiber based sensors to date. We also discuss practical aspects of fluid filling.

Journal ArticleDOI
TL;DR: In this paper, coherent optical orthogonal frequency division multiplexing (CO-OFDM) techniques for the long-haul transmission of 100-Gb/s-class channels are described.
Abstract: This paper describes coherent optical orthogonal frequency division multiplexing (CO-OFDM) techniques for the long-haul transmission of 100-Gb/s-class channels. First, we discuss the configurations of the transmitter and receiver that implement the optical multiplexing/demultiplexing techniques for high-speed CO-OFDM transmission. Next, we review the no-guard-interval (No-GI) CO-OFDM transmission scheme which utilizes optical multiplexing for OFDM signal generation and the intradyne receiver configuration with digital signal processing (DSP). We examine the transmission characteristics of the proposed scheme, and show that No-GI CO-OFDM offers compact signal spectra and superior performance with regard to tolerance against optical amplifier noise and polarization-mode dispersion (PMD). We then introduce long-haul high-capacity transmission experiments employing No-GI CO-OFDM; 13.4 Tb/s (134 times 111 Gb/s) transmission is successfully demonstrated over 3600 km of ITU-T G.652 single-mode fiber without using optical dispersion compensation.

Journal ArticleDOI
TL;DR: In this article, single carrier based multi-level and multi-dimensional coding (ML-MDC) technologies have been demonstrated for spectrally efficient 100-Gb/s transmission.
Abstract: We review and study several single carrier based multi-level and multi-dimensional coding (ML-MDC) technologies recently demonstrated for spectrally-efficient 100-Gb/s transmission. These include 16-ary PDM-QPSK, 64-ary PDM-8PSK, 64-ary PDM-8QAM as well as 256-ary PDM-16 QAM. We show that high-speed QPSK, 8PSK, 8QAM, and 16QAM can all be generated using commercially available optical modulators using only binary electrical drive signals through novel synthesis methods, and that all of these modulation formats can be detected using a universal receiver front-end and digital coherent detection. We show that the constant modulus algorithm (CMA), which is highly effective for blind polarization recovery of PDM-QPSK and PDM-8PSK signals, is much less effective for PDM-8QAM and PDM-16 QAM. We then present a recently proposed, cascaded multi-modulus algorithm for these cases. In addition to the DSP algorithms used for constellation recovery, we also describe a DSP algorithm to improve the performance of a coherent receiver using single-ended photo-detection. The system impact of ASE noise, laser phase noise, narrowband optical filtering and fiber nonlinear effects has been investigated. For high-level modulation formats using full receiver-side digital compensation, it is shown that the requirement on LO phase noise is more stringent than the signal laser. We also show that RZ pulse shaping significantly improves filter- and fiber-nonlinear tolerance. Finally we present three high-spectral-efficiency and high-speed DWDM transmission experiments implementing these ML-MDC technologies.

Journal ArticleDOI
TL;DR: In this article, the effects of pointing errors on the performance of a free-space optical laser communication system are studied and an expression for the mean intensity under pointing fluctuations is derived.
Abstract: The effects of pointing errors on the performance of a free-space optical laser communication system are studied. The log-normal and gamma-gamma irradiance probability density function models have been considered to include the effects of optical turbulence. An expression for the mean intensity under pointing fluctuations is derived. Results for ergodic and outage channel capacities are presented. Since the irradiance statistics vary with pointing fluctuations, a wave-optics-based approach is proposed to evaluate the capacity expressions. Although, in general, turbulence degrades communications link performance, it can reduce sensitivity to pointing errors by increasing the effective beam radius. Finally, we present analytical expressions for evaluating the bit-error-rate performance of the on -off keying system in the presence of pointing errors, and provide error performance results.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a field-coupling model for propagation in graded-index MMF, analogous to the principal-state model for polarization-mode dispersion in single-mode fiber.
Abstract: Power-coupling models are inherently unable to describe certain mode coupling effects in multimode fiber (MMF) when using coherent sources at high bit rates, such as polarization dependence of the impulse response. We develop a field-coupling model for propagation in graded-index MMF, analogous to the principal-states model for polarization-mode dispersion in single-mode fiber. Our model allows computation of the fiber impulse response, given a launched electric-field profile and polarization. In order to model both spatial- and polarization-mode coupling, we divide a MMF into numerous short sections, each having random curvature and random angular orientation. The model can be described using only a few parameters, including fiber length, number of sections, and curvature variance. For each random realization of a MMF, we compute a propagation matrix, the principal modes (PMs), and corresponding group delays (GDs). When the curvature variance and fiber length are small (low-coupling regime), the GDs are close to their uncoupled values, and scale linearly with fiber length, while the PMs remain highly polarized. In this regime, our model reproduces the polarization dependence of the impulse response that is observed in silica MMF. When the curvature variance and fiber length are sufficiently large (high-coupling regime), the GD spread is reduced, and the GDs scale with the square root of the fiber length, while the PMs become depolarized. In this regime, our model is consistent with the reduced GD spread observed in plastic MMF.

Journal ArticleDOI
TL;DR: In this paper, a method for combined fiber parameter estimation from digital filter coefficients of a polarization diverse coherent receiver is presented, where all deterministic linear optical channel parameters like residual chromatic dispersion (CD), polarization-mode dispersion, and polarization dependent loss (PDL) are continuously monitored by analysis of the filter impulse response of the adaptive equalizer.
Abstract: In this paper, we present a method for combined fiber parameter estimation from digital filter coefficients of a polarization diverse coherent receiver. All deterministic linear optical channel parameters like residual chromatic dispersion (CD), polarization-mode dispersion (PMD), and polarization-dependent loss (PDL) are continuously monitored by analysis of the filter impulse response of the adaptive equalizer. After deriving the according equations from the theoretical linear fiber channel model, we demonstrate robust estimation for a joint combination of all impairments.

Journal ArticleDOI
TL;DR: In this paper, a multistage narrowband optical pole-zero notch filter is presented, which allows for reconfigurable and independent tuning of the center frequency, null depth, and bandwidth for one or more notches simultaneously.
Abstract: We present a fully tunable multistage narrowband optical pole-zero notch filter that is fabricated in a silicon complementary metal oxide semiconductor (CMOS) foundry. The filter allows for the reconfigurable and independent tuning of the center frequency, null depth, and bandwidth for one or more notches simultaneously. It is constructed using a Mach-Zehnder interferometer (MZI) with cascaded tunable all-pass filter (APF) ring resonators in its arms. Measured filter nulling response exhibits ultranarrow notch 3 dB BW of 0.6350 GHz, and nulling depth of 33 dB. This filter is compact and integrated in an area of 1.75 mm2. Using this device, a novel method to cancel undesired bands of 3 dB bandwidth of < 910 MHz in microwave-photonic systems is demonstrated. The ultranarrow filter response properties have been realized based on our developed low-propagation loss silicon channel waveguide and tunable ring-resonator designs. Experimentally, they yielded a loss of 0.25 dB/cm and 0.18 dB/round trip, respectively.

Journal ArticleDOI
TL;DR: In this article, a linearly field-modulated, direct-detected virtual single-sideband orthogonal frequency-division multiplexing (VSSB-OFDM) system that employs a tunable frequency gap and an iterative detection technique is proposed as a spectrally efficient format.
Abstract: We analytically and experimentally demonstrate a linearly field-modulated, direct-detected virtual single-sideband orthogonal frequency-division multiplexing (VSSB-OFDM) system that employs a tunable frequency gap and an iterative detection technique. The VSSB-OFDM that uses no frequency gap, which is referred to as the gapless VSSB-OFDM, is proposed as a spectrally efficient format. Compared with the intensity-modulated SSB-OFDM, the gapless VSSB-OFDM saves half the electrical bandwidth (BW), and exhibits better receiving sensitivity and more robust tolerance against fiber chromatic dispersion (CD). Furthermore, by incorporating a tunable frequency gap between the optical carrier and the OFDM data sideband, the calculating burden of the iterative detection is greatly alleviated and the system performance can be flexibly improved within moderate iterations. The width of the optimum frequency gap is found to be ${\sim} {\hbox {0.35}}$ sideband BW, which is reached by trading the levels of signal–signal beat interference and the residual image beat interference. Such a gapped VSSB-OFDM system requires fewer iterations to extract the desired data from the interfered signal and exhibits greater robustness against the carrier-to-signal-power ratio (CSPR) variation, compared with the gapless VSSB-OFDM. In this paper, the analytical model of the proposed gapped VSSB-OFDM system will be addressed. In addition, we also successfully conduct a gapped VSSB-OFDM signal transmission over 1600 km of uncompensated standard single-mode fiber (SSMF) with only ${\sim} {\hbox {3}}$ dB optical SNR (OSNR) penalty, and obtain a significant OSNR sensitivity improvement of ${\sim} {\hbox {8}}$ dB, compared with the gapless VSSB-OFDM, after such a 1600-km fiber link.

Journal ArticleDOI
TL;DR: In this article, a radio frequency (RF)-tone-assisted optical orthogonal frequency-division multiplexing (OFDM) transmission was proposed and experimentally demonstrated, and the optimum value of the important parameter, carrier-to-signal-power ratio (CSPR), was analytically obtained and supported via the experimental results.
Abstract: In this paper, we propose and experimentally demonstrate a radio frequency (RF)-tone-assisted optical orthogonal frequency-division multiplexing (OFDM) transmission. By inserting an RF tone at the edge of the signal band and biasing the Mach-Zehnder modulator (MZM) at the null point, the proposed system has a better sensitivity and chromatic dispersion (CD) tolerance compared to the previous intensity-modulated single-sideband OFDM (SSB-OFDM). We show analytically that the majority of the linear channel impairments, such as the transmitter, CD, optical filtering, and receiver, can be compensated for by a simple zero-forcing equalizer. Besides, the optimum value of the important parameter, carrier-to-signal-power ratio (CSPR), is analytically obtained and supported via the experimental results. We also observe that the relatively worse sensitivity of the previous SSB-OFDM can be attributed to the limited CSPR. We experimentally demonstrate a 10-Gb/s, 8 quadrature-amplitude modulation (QAM) RF-tone-assisted OFDM transmission, and show that our system has a ~ 5-dB better sensitivity compared to the previous intensity-modulated SSB-OFDM and exhibits a negligible transmission penalty after 260-km uncompensated standard single-mode fiber (SSMF).