scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Mammary Gland Biology and Neoplasia in 2011"


Journal ArticleDOI
TL;DR: This review summarizes knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discusses aspects of comparative relevance to human medicine.
Abstract: Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.

340 citations


Journal ArticleDOI
TL;DR: The present review will summarize and compare reports on mastitis etiology and its epidemiology in humans and food animal species.
Abstract: Mastitis is broadly defined as the inflammation of the mammary gland; however, the concept of mastitis is customized to address its social and clinical impact in the case of humans and the health, welfare, and economic consequences for other mammals. There are many microbial, host, and environmental factors that influence the development of mastitis. Some are common to all mammals as well as inherent to each species. Together these factors influence the most prevalent etiological agents for each species and might determine the possibility of interspecies transmission with its consequences to public health. The present review will summarize and compare reports on mastitis etiology and its epidemiology in humans and food animal species.

192 citations


Journal ArticleDOI
TL;DR: The emergence of MRSA in dairy cattle may be associated with contact with other host species, as in the case of ST398, or with the exchange of genetic material between S. aureus and coagulase negative Staphylococcus species, which are the most common species associated with bovine intramammary infections and commonly carry antimicrobial resistance determinants.
Abstract: Staphylococcus aureus is a ubiquitous organism that causes a variety of diseases including mastitis in cattle and humans. High-level resistance of S. aureus to β-lactams conferred by a mecA gene encoding a modified penicillin binding protein (PBP2a) was first observed in the early 1960’s. These methicillin resistant S. aureus (MRSA) have been responsible for both hospital acquired infections (HA-MRSA) and, more recently, community acquired MRSA (CA-MRSA). A small number of human MRSA mastitis cases and outbreaks in maternity or neonatal units have been reported which are generally the result of CA-MRSA. The establishment of the sequence type 398 (ST398) in farm animals, primarily pigs, in the early 2000’s has provided a reservoir of infection for humans and dairy cattle, particularly in continental Europe, described as livestock-associated MRSA (LA-MRSA). Prior to the emergence of ST398 there were sporadic reports of MRSA in bovine milk and cases of mastitis, often caused by strains from human associated lineages. Subsequently, there have been several reports describing bovine udder infections caused by ST-398 MRSA. Recently, another group of LA-MRSA strains was discovered in humans and dairy cattle in Europe. This group carries a divergent mecA gene and includes a number of S. aureus lineages (CC130, ST425, and CC1943) that were hitherto thought to be bovine-specific but are now also found as carriage or clinical isolates in humans. The emergence of MRSA in dairy cattle may be associated with contact with other host species, as in the case of ST398, or with the exchange of genetic material between S. aureus and coagulase negative Staphylococcus species, which are the most common species associated with bovine intramammary infections and commonly carry antimicrobial resistance determinants.

153 citations


Journal ArticleDOI
TL;DR: Signaling from FAK moreover regulates p53 and miR-200 members, which control apoptosis and epithelial phenotype, such that a compliant matrix is predicted to promote normal mammary gland architecture and suppress tumor formation.
Abstract: Cell adhesion to the extracellular matrix (ECM) is necessary for development of the mammary gland, and to maintain the normal architecture and function of the gland Cells adhere to the ECM via the integrin family of trans-membrane receptors, which signal to control mammary-specific gene expression and regulate cell proliferation and survival During tumor formation, the ECM is extensively remodeled and signaling through integrins is altered such that cells become proliferative and invasive A key regulator of whether integrin-mediated adhesion will promote tumor suppression or tumor formation is the stiffness of the stromal ECM The normal mammary gland is typically surrounded by a loose collagenous stroma An increase in the deposition of collagen and other stromal components is associated with mammographic density, which is one of the greatest risk factors for developing breast carcinoma Several groups have demonstrated that increased stromal ECM density results in a matrix that is stiffer Cells sense the stiffness of their surrounding ECM by Rho-mediated contraction of the actin-myosin cytoskeleton If the surrounding ECM is stiffer than the cell's ability to contract it, then the tensile forces that result are able to drive the clustering of integrins and assemble adhesion signaling complexes The result is subsequent activation of signaling pathways including FAK, ERK, and PI3K that drive cell proliferation and survival In contrast, focal complexes are not formed in a compliant matrix, and activation of FAK and pERK is diminished, resulting in control of proliferation Signaling from FAK moreover regulates p53 and miR-200 members, which control apoptosis and epithelial phenotype, such that a compliant matrix is predicted to promote normal mammary gland architecture and suppress tumor formation

136 citations


Journal ArticleDOI
TL;DR: Critical mammary gland defense mechanisms that are necessary for immune surveillance and the rapid elimination of mastitis-causing organisms will be summarized.
Abstract: Mastitis is an inflammation of the mammary gland commonly caused by bacterial infection. The inflammatory process is a normal and necessary immunological response to invading pathogens. The purpose of host inflammatory responses is to eliminate the source of tissue injury, restore immune homeostasis, and return tissues to normal function. The inflammatory cascade results not only in the escalation of local antimicrobial factors, but also in the increased movement of leukocytes and plasma components from the blood that may cause damage to host tissues. A precarious balance between pro-inflammatory and pro-resolving mechanisms is needed to ensure optimal bacterial clearance and the prompt return to immune homeostasis. Therefore, inflammatory responses must be tightly regulated to avoid bystander damage to the milk synthesizing tissues of the mammary gland. The defense mechanisms of the mammary gland function optimally when invading bacteria are recognized promptly, the initial inflammatory response is adequate to rapidly eliminate the infection, and the mammary gland is returned to normal function quickly without any noticeable clinical symptoms. Suboptimal or dysfunctional mammary gland defenses, however, may contribute to the development of severe acute inflammation or chronic mastitis that adversely affects the quantity and quality of milk. This review will summarize critical mammary gland defense mechanisms that are necessary for immune surveillance and the rapid elimination of mastitis-causing organisms. Situations in which diminished efficiency of innate or adaptive mammary gland immune responses may contribute to disease pathogenesis will also be discussed. A better understanding of the complex interactions between mammary gland defenses and mastitis-causing pathogens should prove useful for the future control of intramammary infections.

135 citations


Journal ArticleDOI
TL;DR: Observations strongly support the belief that insults from mastitis that lead to losses in mammary function are directly related to disruption of alveolar cell integrity, sloughing of cells, induced apoptosis, and increased appearance of poorly-differentiated cells.
Abstract: It is a given in biology that structure and function go hand-in-hand. At the level of the mammary alveoli, copious milk production depends on the proliferation of mammary epithelial cells and the biochemical and structural differentiation of these cells after parturition. For example, data from quantitative structural studies demonstrate that differences in milk production between beef and dairy cows correspond with a relative failure of alveolar cell differentiation in cattle not specifically selected for milk yield. It is likely, but not proven, that production differences within or between dairy breeds are also determined by differences in the capacity of alveolar cells to differentiate or to maintain an adequate state of differentiation. These observations strongly support the belief that insults from mastitis that lead to losses in mammary function are directly related to disruption of alveolar cell integrity, sloughing of cells, induced apoptosis, and increased appearance of poorly-differentiated cells. Ironically, reduced milk production in cases of subclinical mastitis, is also associated with increases in milk somatic cell count. Thus the elevated neutrophil migration evoked to fight inflammation can inadvertently rendered alveolar epithelial cells non-secretory. A challenge to future researchers will be to devise mastitis treatments and therapies that prevent and/or repair damage to alveolar structure and maximize subsequent secretory cell differentiation.

134 citations


Journal ArticleDOI
TL;DR: The principle objective of this review is to summarize the literature evaluating the question, “Does antimicrobial susceptibility predict treatment outcome for intramammary infections caused by common bacterial pathogens?”
Abstract: Mastitis occurs in numerous species. Antimicrobial agents are used for treatment of infectious mastitis in dairy cattle, other livestock, companion animals, and humans. Mastitis is an economically important disease of dairy cattle and most mastitis research has focused on epidemiology and control of bovine mastitis. Antibiotic treatment of clinical and subclinical mastitis in dairy cattle is an established component of mastitis control programs. Research on the treatment of clinical and subclinical mastitis in other dairy species such as sheep and goats has been less frequent, although the general principles of mastitis therapy in small ruminants are similar to those of dairy cattle. Research on treatment of clinical mastitis in humans is limited and as for other species empirical treatment of mastitis appears to be common. While antimicrobial susceptibility testing is recommended to direct treatment decisions in many clinical settings, the use of susceptibility testing for antibiotic selection for mastitis treatments of dairy cattle has been challenged in a number of publications. The principle objective of this review is to summarize the literature evaluating the question, “Does antimicrobial susceptibility predict treatment outcome for intramammary infections caused by common bacterial pathogens?” This review also addresses current issues related to antimicrobial use and treatment decisions for mastitis in dairy cattle. Information on treatment of mastitis in other species, including humans, is included although research appears to be limited. Issues related to study design, gaps in current knowledge and opportunities for future research are identified for bovine mastitis therapy.

132 citations


Journal ArticleDOI
TL;DR: The therapeutic strategies to target the TGF-β pathway in breast cancer are becoming increasingly clear and this review will focus on the role T GF-β in Breast cancer invasion and metastasis.
Abstract: The contribution of transforming growth factor β (TGF-β) signaling to breast cancer has been studied for more than two decades. In an early phase TGF-β may act as a tumour suppressor, while later, when cells have become resistant to its anti-mitogenic effects, the role of TGF-β switches towards malignant conversion and progression. TGF-β stimulates cell invasion and modifies the microenvironment to the advantage of cancer cells. Studies have shown that TGF-β promotes bone and lung metastasis via different mechanisms. The therapeutic strategies to target the TGF-β pathway in breast cancer are becoming increasingly clear. This review will focus on the role TGF-β in breast cancer invasion and metastasis.

114 citations


Journal ArticleDOI
TL;DR: The molecular and cellular contributions of noncanonical TGF-β effectors to mammary tumorigenesis and metastatic progression are reviewed.
Abstract: Breast cancer is a heterogeneous disease comprised of at least five major tumor subtypes that coalesce as the second leading cause of cancer death in women in the United States. Although metastasis clearly represents the most lethal characteristic of breast cancer, our understanding of the molecular mechanisms that govern this event remains inadequate. Clinically, ~30% of breast cancer patients diagnosed with early-stage disease undergo metastatic progression, an event that (a) severely limits treatment options, (b) typically results in chemoresistance and low response rates, and (c) greatly contributes to aggressive relapses and dismal survival rates. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates all phases of postnatal mammary gland development, including branching morphogenesis, lactation, and involution. TGF-β also plays a prominent role in suppressing mammary tumorigenesis by preventing mammary epithelial cell (MEC) proliferation, or by inducing MEC apoptosis. Genetic and epigenetic events that transpire during mammary tumorigenesis conspire to circumvent the tumor suppressing activities of TGF-β, thereby permitting late-stage breast cancer cells to acquire invasive and metastatic phenotypes in response to TGF-β. Metastatic progression stimulated by TGF-β also relies on its ability to induce epithelial-mesenchymal transition (EMT) and the expansion of chemoresistant breast cancer stem cells. Precisely how this metamorphosis in TGF-β function comes about remains incompletely understood; however, recent findings indicate that the initiation of oncogenic TGF-β activity is contingent upon imbalances between its canonical and noncanonical signaling systems. Here we review the molecular and cellular contributions of noncanonical TGF-β effectors to mammary tumorigenesis and metastatic progression.

110 citations


Journal ArticleDOI
TL;DR: Light-at-night (LAN) induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling, providing the strongest mechanistic support, thus far, for epidemiological studies demonstrating the elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.
Abstract: This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular and metabolic signaling mechanisms involved in human breast cancer growth and the associated consequences of circadian disruption by exposure to light-at-night (LAN). The anti-proliferative effects of the circadian melatonin signal are, in general, mediated through mechanisms involving the activation of MT1 melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor-positive (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT1-induced activation of Gαi2 signaling and reduction of cAMP levels. Melatonin also regulates the transcriptional activity of additional members of the nuclear receptor super-family, enzymes involved in estrogen metabolism, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and matrix metalloproteinase expression. Melatonin also inhibits the growth of human breast cancer xenografts via MT1-mediated suppression of cAMP leading to a blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Finally, studies in both rats and humans indicate that light-at-night (LAN) induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling, providing the strongest mechanistic support, thus far, for epidemiological studies demonstrating the elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.

91 citations


Journal ArticleDOI
TL;DR: Higher levels of hCG during the first trimester of pregnancy have been associated with a reduction in maternal breast cancer incidence after age 50, and this signature is indicative of a reduced breast cancer risk and serves as a molecular biomarker of differentiation for evaluating the potential use of chemopreventive agents.
Abstract: Breast cancer is the malignant disease most frequently diagnosed in women of all races and nationalities. Since the 1970s the worldwide incidence of this disease has increased 30-40% in postmenopausal women, in whom, paradoxically, the risk of developing breast cancer is significantly reduced by an early first full term pregnancy (FTP) as compared to nulliparous and late parous women. Although the cause of breast cancer is not known, the mechanisms mediating the protection conferred by an early FTP have been identified to reside in the breast itself, and to be modulated by endogenous and environmental exposures that might negatively affect this organ during specific windows in its development that extend from prenatal life until the first pregnancy. Soon after conception the embryo initiates the production of human chorionic gonadotropin (hCG), the glycoprotein hormone that is diagnostic of pregnancy. HCG in conjunction with ovarian steroid hormones primes the hypothalamic neuroendocrine system for maintaining the pregnancy. Higher levels of hCG during the first trimester of pregnancy have been associated with a reduction in maternal breast cancer incidence after age 50. In preclinical studies it has been demonstrated that both FTP and hCG treatment of virgin rats prevent the development of chemically-induced mammary tumors, a phenomenon mediated by the differentiation of the mammary gland epithelial cells prior to carcinogen exposure. Complete differentiation proceeds through complex morphological, physiological and molecular changes that occur during pregnancy and lactation, that ultimately result in increased DNA repair capabilities of the mammary epithelium, activation of genes controlling differentiation and programmed cell death and imprinting in the breast epithelium a specific and permanent genomic signature of pregnancy. This signature is indicative of a reduced breast cancer risk and serves as a molecular biomarker of differentiation for evaluating the potential use of chemopreventive agents.

Journal ArticleDOI
TL;DR: Recent advances made in the understanding of the functions of these two genes, as well as the risks and responses associated with mutations in these and other breast cancer susceptibility genes are summarized.
Abstract: Germ-line mutations in BRCA1 and BRCA2 confer a high risk of developing breast cancer. They account, however, for only 40% of strongly familial breast cancer cases. Intensive genome-wide searches for other highly-penetrant BRCA genes that, individually account for a sizeable fraction of the remaining heritability has not identified any plausible candidates. The "missing heritability" is thought to be due to cumulative effects of susceptibility alleles associated with low to moderate penetrance, in accordance with a polygenic model of inheritance. In addition, a large number of individually very rare, highly penetrant variants could account for part of the gap. Meanwhile, an understanding of the function of BRCA1 and BRCA2 in the DNA damage response pathway has lead to the identification of a number of breast cancer susceptibility genes including PALB2, CHEK2, ATM and BRIP1, all of which interact directly or indirectly with BRCA1 or BRCA2. Knowledge of how BRCA1 and BRCA2 maintain genomic integrity has also led the development of novel targeted therapies. Here we summarize the recent advances made in the understanding of the functions of these two genes, as well as the risks and responses associated with mutations in these and other breast cancer susceptibility genes.

Journal ArticleDOI
TL;DR: Estrogen receptor-α (ERα) and transforming growth factor (TGF)-β signaling pathways are major regulators during mammary gland development, function and tumorigenesis, but relatively little is known of the dysfunction of their interactions in cancer.
Abstract: Estrogen receptor-α (ERα) and transforming growth factor (TGF)-β signaling pathways are major regulators during mammary gland development, function and tumorigenesis. Predominantly, they have opposing roles in proliferation and apoptosis. While ERα signaling supports growth and differentiation and is antiapoptotic, mammary gland epithelia cells are very sensitive to TGF-β—induced cell cycle arrest and apoptosis. Their regulatory pathways intersect, and ERα blocks TGF-β pathway by multiple means, including direct interactions of its signaling components, Smads. However, relatively little is known of the dysfunction of their interactions in cancer. A better understanding would help to develop new strategies for breast cancer treatment.

Journal ArticleDOI
TL;DR: The mechanisms and the evidence underlying these diverse roles for autophagy in cancer are discussed and specific circumstances in which autophage can be most effectively targeted for breast cancer treatment are speculated on.
Abstract: Autophagy is an evolutionarily conserved lysosomal degradation process that is crucial for adaptation to stress as well as in cellular homeostasis. In cancer, our current understanding has uncovered multifaceted roles for autophagy in tumor initiation and progression. Although genetic evidence corroborates a critical role for autophagy as a tumor suppressor mechanism, autophagy can also promote the survival and fitness of advanced tumors subject to stress, which has important implications during breast cancer progression and metastasis. Here, I discuss the mechanisms and the evidence underlying these diverse roles for autophagy in cancer and speculate on specific circumstances in which autophagy can be most effectively targeted for breast cancer treatment.

Journal ArticleDOI
TL;DR: The frequent dysregulation of AGM expression during tumorigenesis and tumor progression suggests that AGMs also play a crucial role as tumor suppressors and oncogenes in breast cancer.
Abstract: Slit, Netrin, Ephrin, and Semaphorin’s roles in development have expanded greatly in the past decade from their original characterization as axon guidance molecules (AGMs) to include roles as regulators of tissue morphogenesis and development in diverse organs. In the mammary gland, AGMs are important for maintaining normal cell proliferation and adhesion during development. The frequent dysregulation of AGM expression during tumorigenesis and tumor progression suggests that AGMs also play a crucial role as tumor suppressors and oncogenes in breast cancer. Moreover, these findings suggest that AGMs may be excellent targets for new breast cancer prognostic tests and more effective therapeutic strategies.

Journal ArticleDOI
TL;DR: Blockade of TGFβ:HER2 crosstalk may suppress breast cancer progression and metastasis, and enhance the efficiency of conventional therapies in patients with HER2-overexpressing breast cancer.
Abstract: Despite its tumor suppressive role in normal mammary epithelial cells, TGFβ has been reported to promote the migration, invasion and survival in breast cancer cells overexpressing the HER2 (ERBB2; neu) oncogene, and to accelerate the metastasis of neu-induced mammary tumors in mice. A clearer understanding of the molecular mechanisms underlying the crosstalk between TGFβ and HER2 has started to emerge. In recent studies reviewed here, the synergistic effect of TGFβ and HER2 on tumor progression has been shown to likely be a combined result of two distinct features: (1) loss of TGFβ’s tumor suppressive effect through functional alterations in the anti-mitogenic effect of Smad-mediated transcription, and (2) gain of pro-survival and pro-migratory function through HER2-dependent mechanisms. In HER2-overexpressing breast cancer, this crosstalk results in increased cancer cell proliferation, survival and invasion, accelerated metastasis in animal models, and resistance to chemotherapy and HER2-targeted therapy. Thus, the transformed cellular context imparted by constitutively active HER2 signaling, as a consequence of HER2 gene amplification or overexpression, aborts the tumor suppressive role of TGFβ and facilitated the oncogenic role of this pathway. In turn, TGFβ potentiates oncogenic HER2 signaling by inducing shedding of the ERBB ligands and clustering of HER2 with integrins. Here we discuss recent studies examining Smad-dependent and -independent mechanisms of crosstalk between TGFβ and HER2. Therefore, blockade of TGFβ:HER2 crosstalk may suppress breast cancer progression and metastasis, and enhance the efficiency of conventional therapies in patients with HER2-overexpressing breast cancer.

Journal ArticleDOI
TL;DR: Comparative proteomic analyses conducted on healthy versus mastitic bovine milk and a comparison of the host defense proteome of human and bovines milk and the proteomic analysis of common veterinary pathogens are introduced.
Abstract: The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.

Journal ArticleDOI
TL;DR: Identifying the cells of origin in breast cancer subtypes makes possible the identification of key processes associated with initiation, progression and maintenance of each tumour subtype, the development of novel targeted therapies and, potentially, of new preventative approaches in high risk groups.
Abstract: Breast tumours are highly heterogeneous with several distinct sub-types recognised according to their histological and molecular features. The biological basis for this heterogeneity is largely unknown, although there are some distinct phenotype–genotype correlations. These include BRCA1 mutation-associated breast cancers, which are typically high grade invasive ductal carcinomas of no special type (IDC-NSTs) with pushing margins that do not express estrogen receptor (ER), progesterone receptor (PR) or the HER2 receptor tyrosine kinase (‘triple negative’). Gene expression analysis of these tumours has grouped them with so called ‘basal-like’ breast cancers and this, together with evidence that knock-down of BRCA1 in vitro blocked luminal differentiation, led to speculation that these tumours arose from the normal basal stem cells within the mammary gland. Recently, however, human breast tissue from BRCA1 mutation carriers was shown to contain an expanded population of luminal progenitor cells which have increased in vitro clonogenic ability. In the mouse, targeted deletion of Brca1 in luminal ER negative progenitors resulted in the formation of mammary tumours which phenocopied human BRCA1 breast tumour pathology, while the deletion of Brca1 in basal stem cells resulted in the formation of tumours which neither resembled human BRCA1 tumours or sporadic basal-like breast tumours. Importantly, however, both sets of mouse tumours were classified as ‘basal-like’ by methods used for human tumour classification based on gene expression profiles. This demonstrates that, as it stands, expression profiling is poor at distinguishing tumour histological subtypes and is also a poor guide to the cell of tumour origin. These human and rodent studies support an origin of BRCA1-mutation associated breast cancer (and indeed of the majority of sporadic basal-like breast cancers) in a luminal ER negative mammary epithelial progenitor. This is a key finding, as identification of the cells of origin in breast cancer subtypes makes possible the identification of key processes associated with initiation, progression and maintenance of each tumour subtype, the development of novel targeted therapies and, potentially, of new preventative approaches in high risk groups.

Journal ArticleDOI
TL;DR: Functional analysis suggests that this mutation alters TGF-β signaling and promotes tumorigenesis in breast cancer, and a better understanding of the molecular mechanism of TGFBR1 signaling in Breast cancer may have an impact on breast cancer risk assessment and breast cancer prevention.
Abstract: Over the past decade mutations discovered in genes such as BRCA1, BRCA2, TP53 and PTEN, have emerged as high-penetrance susceptibility genes and are clinically relevant for determination of breast cancer risk. Genetic counseling and subsequent screening for mutations and gene rearrangement has improved patient outcome through early detection and prophylactic interventions in patients with familial breast cancer syndromes. However, these high-penetrance genes only account for a small fraction of the hereditary linked breast cancers. It is currently believed that low-penetrance susceptibility alleles and/or environmental factors may play an important role in the remaining cases. TGFBR1*6A (*6A) is a common hypomorphic variant of the type I TGF-β receptor gene (TGFBR1) that has been associated with risk for several forms of cancer, in particular breast cancer. Several epidemiological studies have suggested that patients who carry the *6A allele have an increased risk of breast cancer. Furthermore, functional analysis suggests that this mutation alters TGF-β signaling and promotes tumorigenesis. Although a decade of research has provided basic information in regards to the prevalence of this mutation in several cancer types and populations the molecular underpinning of its functional effects are poorly understood. A better understanding of the molecular mechanism of TGFBR1 signaling in breast cancer may have an impact on breast cancer risk assessment and breast cancer prevention.

Journal ArticleDOI
TL;DR: The use of systems biology concepts for the holistic study of animal responses to intramammary infection is discussed, providing an update of recent work using transcriptomics to study mammary and peripheral tissue as well as neutrophils and macrophage responses to mastitis-causing pathogens.
Abstract: Application of microarrays to the study of intramammary infections in recent years has provided a wealth of fundamental information on the transcriptomics adaptation of tissue/cells to the disease. Due to its heavy toll on productivity and health of the animal, in vivo and in vitro transcriptomics works involving different mastitis-causing pathogens have been conducted on the mammary gland, primarily on livestock species such as cow and sheep, with few studies in non-ruminants. However, the response to an infectious challenge originating in the mammary gland elicits systemic responses in the animal and encompasses tissues such as liver and immune cells in the circulation, with also potential effects on other tissues such as adipose. The susceptibility of the animal to develop mastitis likely is affected by factors beyond the mammary gland, e.g. negative energy balance as it occurs around parturition. Objectives of this review are to discuss the use of systems biology concepts for the holistic study of animal responses to intramammary infection; providing an update of recent work using transcriptomics to study mammary and peripheral tissue (i.e. liver) as well as neutrophils and macrophage responses to mastitis-causing pathogens; discuss the effect of negative energy balance on mastitis predisposition; and analyze the bovine and murine mammary innate-immune responses during lactation and involution using a novel functional analysis approach to uncover potential predisposing factors to mastitis throughout an animal’s productive life.

Journal ArticleDOI
TL;DR: It is suggested that the tumor suppressive functions of TGF-ß involve Wnt5a-mediated antagonism of Wnt/ß-catenin signaling and limiting the stem cell population.
Abstract: Wnt5a is a member of the Wingless-related/MMTV-integration family of secreted growth factors, which are involved in a wide range of cellular processes. Wnt signaling can be broadly divided into two categories the canonical, s-catenin-dependent pathway and the non-canonical s-catenin-independent pathway. Wnt5a is a non-canonical signaling member of the Wnt family. Loss of Wnt5a is associated with early relapse of invasive breast cancer, increased metastasis, and poor survival in humans. It has been shown that TGF-s directly regulates expression of Wnt5a in mammary gland and that Wnt5a mediates the effects of TGF-s on branching during mammary gland development. Here we review the evidence suggesting Wnt5a acts as an effector of TGF-s actions in breast cancer. It is suggested that the tumor suppressive functions of TGF-s involve Wnt5a-mediated antagonism of Wnt/s-catenin signaling and limiting the stem cell population. Interactions between TGF-s and Wnt5a in metastasis appear to be more complex, and may depend on specific cues from the microenvironment as well as activation of specific intracellular signaling pathways.

Journal ArticleDOI
TL;DR: Preclinical and early clinical research suggests that specific classes of chemotherapy may be more effective in mutation carriers, and PARP inhibitors represent a novel therapeutic strategy that exploits the weaknesses of BRCA1/2-associated malignancies.
Abstract: Over the past 15 years there has been substantial improvement in the understanding of hereditary breast cancer. Germline genetic testing for mutations in BRCA1, BRCA2, PTEN and TP53 allows for the identification of individuals at increased risk for breast, ovarian and other cancers. Advances in screening, prevention and treatment have led to improved clinical management which is best defined for BRCA1 and BRCA2 mutation carriers. The addition of screening techniques such as breast magnetic resonance imaging has been shown to lead to earlier detection. Risk-reducing salpingo-oophorectomy leads to a reduction in the risk of both ovarian cancer and breast cancer and also is associated with an improvement in overall survival. BRCA1/2 mutation status may be applicable to systemic therapy decisions. Preclinical and early clinical research suggests that specific classes of chemotherapy may be more effective in mutation carriers. Finally, PARP inhibitors represent a novel therapeutic strategy that exploits the weaknesses of BRCA1/2-associated malignancies.

Journal ArticleDOI
TL;DR: A review of recent studies has utilized polymorphisms to better define the genes and chromosomal regions that contribute to mastitis resistance in bovine systems, as the most work regarding mastitis has been conducted in this species.
Abstract: One of the most frequent mammary diseases impacting lactating animals is mastitis, an inflammation of the mammary gland most commonly caused by bacterial infection. The severity of mastitis is greatly influenced by the invading organism and the subsequent immune response which must recognize the foreign organism, recruit immune cells, eliminate the invading pathogen, and resolve the inflammatory response. The speed, strength, and duration of this response and subsequent disease susceptibility are critically tied to the genetic background of an animal. However, the genetic contribution has been difficult to identify due to the complex interactions that must occur for effective disease resistance. Recent studies have utilized polymorphisms to better define the genes and chromosomal regions that contribute to mastitis resistance. This review will examine these studies with primary emphasis in bovine systems, as the most work regarding mastitis has been conducted in this species.

Journal ArticleDOI
TL;DR: The panoply of cancer phenotypes associated with mutations of genes other than in BRCA1 is yet to be fully characterised; in fact, many cancer syndromes, germline mutations and gene sequence variants are under investigation for their possible morphological associations.
Abstract: Familial breast cancer accounts for a small but significant proportion of breast cancer cases worldwide. Identification of the candidate genes is always challenging specifically in patients with little or no family history. Therefore, a multidisciplinary team is required for the proper detection and further management of these patients. Pathologists have played a pivotal role in the cataloguing of genotypic-phenotypic correlations in families with hereditary cancer syndromes. These efforts have led to the identification of histological and phenotypic characteristics that can help predict the presence or absence of germline mutations of specific cancer predisposition genes. However, the panoply of cancer phenotypes associated with mutations of genes other than in BRCA1 is yet to be fully characterised; in fact, many cancer syndromes, germline mutations and gene sequence variants are under investigation for their possible morphological associations. Here we review the current understanding of phenotype-genotype correlation in familial breast cancer.

Journal ArticleDOI
TL;DR: An overview of adaptive immunity, previous vaccine efforts, current immunological findings relevant to enhancing immune memory, and research technologies that show promise in directing future vaccine efforts to enhance mammary gland immunity and prevent mastitis are provided.
Abstract: The mucosal immune system encounters antigens that enhance and suppress immune function, and serves as a selective barrier against invading pathogens. The mammary gland not only encounters antigens but also produces a nutrient evolved to protect and enhance mucosal development in the neonate. Efforts to manipulate antibody concentrations in milk to prevent mastitis, an infection of the mammary gland, have been hampered both by complexity and variation in target pathogens and limited knowledge of cellular immunity in the gland. Successful vaccination strategies must overcome the natural processes that regulate types and concentrations of milk antibodies for neonatal development, and enhance cellular immunity. Furthermore, the need to overcome dampening of immunity caused by non-pathogenic encounters to successfully prevent establishment of infection is an additional obstacle in vaccine development at mucosal sites. A significant mastitis pathogen, Staphylococcus aureus, not only resides as a normal flora on a multitude of species, but also causes clinical disease with limited treatment options. Using the bovine model of S. aureus mastitis, researchers can decipher the role of antigen selection and presentation by mammary dendritic cells, enhance development of central and effector memory function, and subsequently target specific memory cells to the mammary gland for successful vaccine development. This brief review provides an overview of adaptive immunity, previous vaccine efforts, current immunological findings relevant to enhancing immune memory, and research technologies that show promise in directing future vaccine efforts to enhance mammary gland immunity and prevent mastitis.

Journal ArticleDOI
TL;DR: The potential of combating breast cancer through activation of the innate immune system is discussed, including possible strategies to enhance the success of immunotherapy.
Abstract: The innate immune system ensures effective protection against foreign pathogens and plays important roles in tissue remodeling. There are many types of innate immune cells, including monocytes, macrophages, dendritic cells, and granulocytes. Interestingly, these cells accumulate in most solid tumors, including those of the breast. There, they play a tumor-promoting role through secretion of growth and angiogenic factors, as well as immunosuppressive molecules. This is in strong contrast to the tumor-suppressing effects that innate immune cells exert in vitro upon proper activation. Therapeutic approaches have been developed with the aim of achieving similar suppressive activities in vivo. However, multiple factors in the tumor microenvironment, many of which are immunosuppressive, represent a major obstacle to effective treatment. Here, we discuss the potential of combating breast cancer through activation of the innate immune system, including possible strategies to enhance the success of immunotherapy.

Journal ArticleDOI
TL;DR: Elevated LTBP1 levels appear in two gene signatures predictive of enhanced metastatic behavior, suggesting that LTBP may promote metastasis by providing the bridge between structural and signaling components of the epithelial to mesenchymal transition (EMT).
Abstract: Latent Transforming Growth Factor beta (TGFβ) Binding Proteins (LTBPs) are chaperones and determinants of TGFβ isoform-specific secretion. They belong to the LTBP/Fibrillin family and form integral components of the fibronectin and microfibrillar extracellular matrix (ECM). LTBPs serve as master regulators of TGFβ bioavailability, functioning to incorporate and spatially pattern latent TGFβ at regular intervals within the ECM, and actively participate in integrin-mediated stretch activation of TGFβ in vivo. In so doing they create a highly patterned sensory system where local changes in ECM tension can be detected and transduced into focal signals. The physiological role of LTBPs in the mammary gland remains largely unstudied, however both loss and gain of LTBP expression is found in breast cancers and breast cancer cell lines. Importantly, elevated LTBP1 levels appear in two gene signatures predictive of enhanced metastatic behavior. LTBP may promote metastasis by providing the bridge between structural and signaling components of the epithelial to mesenchymal transition (EMT).

Journal ArticleDOI
TL;DR: Signs that initiate OIS, evidence for its role in tumor suppression, and mechanisms for its evasion in tumorigenesis are discussed.
Abstract: While senescence has been known for some time as an inevitable result of repeated DNA replication, oncogene-induced senescence (OIS) represents a relatively new phenomenon. OIS, like apoptosis, has emerged to represent a putative barrier to tumorigenesis in many tissues, including the breast. Here we discuss signals that initiate OIS, evidence for its role in tumor suppression, and mechanisms for its evasion in tumorigenesis.


Journal ArticleDOI
TL;DR: Progress made towards modeling BRCA1-deficient breast cancer in mice is discussed and what is learned from preclinical studies using these models are discussed.
Abstract: Worldwide, more than one million women are diagnosed with breast cancer every year, making it the most common malignancy of females in the developed world. Germline mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 account for 4–6% of all breast cancer cases, and mutation carriers have a lifetime risk of 80% for developing breast cancer and 40% for developing ovarian cancer. Current treatment options are limited and often do not lead to cure. In the 17 years since the discovery of BRCA1, the generation of mouse models for BRCA1 deficiency has greatly aided our understanding of it’s role in tumorigenesis. In contrast to human BRCA1 mutation carriers, mice carrying heterozygous mutations in Brca1 did not develop spontaneous tumors. This led to the generation of conditional mouse models in which tissue-specific Brca1 deletion induces formation of mammary tumors that closely resemble human BRCA1-mutated breast tumors. These models have proven useful for studying BRCA1-related tumor development, drug response and resistance. BRCA1-deficient cancer cells are defective in DNA repair mediated by homologous recombination (HR) and therefore highly sensitive to DNA-damaging agents such as platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors. However, BRCA1-mutated tumors can develop resistance to these drugs; hence improved treatment strategies are critical. Existing mouse models have already proven useful for preclinical testing of (combinations of) therapeutic agents that may be beneficial for the treatment of patients with BRCA1-mutated tumors. In this review, we discuss the progress made towards modeling BRCA1-deficient breast cancer in mice and what we have learned from preclinical studies using these models.