scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Materials Research in 2008"


Journal ArticleDOI
TL;DR: The state-of-the-art and limitations for each of these materials classes are presented, along with possible avenues of research as discussed by the authors, with particular emphasis on national security needs and the goal of identifying the challenges and opportunities that this area represents for the materials science community.
Abstract: Due to events of the past two decades, there has been new and increased usage of radiation-detection technologies for applications in homeland security, nonproliferation, and national defense. As a result, there has been renewed realization of the materials limitations of these technologies and greater demand for the development of next-generation radiation-detection materials. This review describes the current state of radiation-detection material science, with particular emphasis on national security needs and the goal of identifying the challenges and opportunities that this area represents for the materials-science community. Radiation-detector materials physics is reviewed, which sets the stage for performance metrics that determine the relative merit of existing and new materials. Semiconductors and scintillators represent the two primary classes of radiation detector materials that are of interest. The state-of-the-art and limitations for each of these materials classes are presented, along with possible avenues of research. Novel materials that could overcome the need for single crystals will also be discussed. Finally, new methods of material discovery and development are put forward, the goal being to provide more predictive guidance and faster screening of candidate materials and thus, ultimately, the faster development of superior radiation-detection materials.

271 citations


Journal ArticleDOI
TL;DR: In this article, a novel ZnO seedless chemical approach for density-controlled growth of nanowire (NW) arrays has been developed for field emission, vertical field effect transistor arrays, nanogenerators, and nanopiezotronics.
Abstract: A novel ZnO seedless chemical approach for density-controlled growth of ZnO nanowire (NW) arrays has been developed. The density of ZnO NWs is controlled by changing the precursor concentration. Effects of both growth temperature and growth time are also investigated. By this novel synthesis technique, ZnO NW arrays can grow on any substrate (polymer, glass, semiconductor, metal, and more) as long as the surface is smooth. This technique represents a new, low-cost, time-efficient, and scalable method for fabricating ZnO NW arrays for applications in field emission, vertical field effect transistor arrays, nanogenerators, and nanopiezotronics.

264 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of solute elements in grain refinement was investigated by producing a series of castings in a nonconsumable arc-melting furnace, and the results were interpreted with the aid of available phase-diagram information and solute-based models of grain refinement.
Abstract: Despite the importance of the prior-β grain structure in determining the properties of titanium-based alloys, there are few published studies on methods of controlling the size of these grains in commercial alloys. The existing research raises questions about the relative importance of solute elements in grain-refining mechanisms, particularly the common alloying elements of aluminum and vanadium. The effect of these elements was investigated by producing a series of castings in a nonconsumable arc-melting furnace, and the results were interpreted with the aid of available phase-diagram information and solute-based models of grain refinement. A small reduction in grain size was obtained with increasing solute additions; however, this was not expected from the theoretical analysis. Possible reasons for this discrepancy are discussed.

160 citations


Journal ArticleDOI
TL;DR: In this paper, the synthesis of nitrides of iridium and palladium using the laser-heated diamond anvil cell was described, and the in situ techniques of x-ray powder diffraction and Raman scattering were used to characterize these compounds.
Abstract: We describe the synthesis of nitrides of iridium and palladium using the laser-heated diamond anvil cell. We have used the in situ techniques of x-ray powder diffraction and Raman scattering to characterize these compounds and have compared our experimental findings where possible to the results of first-principles theoretical calculations. We suggest that palladium nitride is isostructural with pyrite, while iridium nitride has a monoclinic symmetry and is isostructural with baddeleyite.

148 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that when the specimen flexes or possesses heterogeneities, such as free edges or interfaces between regions of different properties, artifacts arise in the standard analysis that affect the measurement of hardness and modulus.
Abstract: The standard Oliver–Pharr nanoindentation analysis tacitly assumes that the specimen is structurally rigid and that it is both semi-infinite and homogeneous. Many specimens violate these assumptions. We show that when the specimen flexes or possesses heterogeneities, such as free edges or interfaces between regions of different properties, artifacts arise in the standard analysis that affect the measurement of hardness and modulus. The origin of these artifacts is a structural compliance (Cs), which adds to the machine compliance (Cm), but unlike the latter, Cs can vary as a function of position within the specimen. We have developed an experimental approach to isolate and remove Cs. The utility of the method is demonstrated using specimens including (i) a silicon beam, which flexes because it is supported only at the ends, (ii) sites near the free edge of a fused silica calibration standard, (iii) the tracheid walls in unembedded loblolly pine (Pinus taeda), and (iv) the polypropylene matrix in a polypropylene–wood composite.

123 citations


Journal ArticleDOI
TL;DR: In this article, a poroelastic analysis is used to examine spherical indentation creep responses of hydrated biological materials, and the results show increased stiffness, decreased Poisson's ratio, and decreased hydraulic permeability.
Abstract: Indentation techniques are used for the measurement of mechanical properties of a wide range of materials. Typical elastic analysis for spherical indentation is applicable in the absence of time-dependent deformation, but is inappropriate for materials with time-dependent creep responses active in the experimental time frame. In the current work, a poroelastic analysis—a mechanical theory incorporating fluid motion through a porous elastic network—is used to examine spherical indentation creep responses of hydrated biological materials. Existing analytical and finite element solutions for the poroelastic Hertzian indentation problem are reviewed, and a poroelastic parameter identification scheme is developed. Experimental data from nanoindentation of hydrated bone immersed in water and polar solvents (ethanol, methanol, acetone) are examined within the poroelastic framework. Immersion of bone in polar solvents with decreasing polarity results in increased stiffness, decreased Poisson’s ratio, and decreased hydraulic permeability. Nanoindentation poroelastic analysis results are compared with existing literature for bone poroelasticity at larger length scales, and the effective pore size probed in indentation creep experiments was estimated to be 1.6 nm, consistent with the scale of fundamental collagen–apatite interactions. Results for water permeability in bone were compared with studies of water diffusion through fully dense bone.

107 citations


Journal ArticleDOI
TL;DR: The thickness and mechanical properties of this surface-modified layer were determined and it was shown that the surface layer was extremely brittle, with its toughness in the range of 0.1-0.3 J/m(2).
Abstract: Surface-modification of the elastomer poly(dimethylsiloxane) by exposure to oxygen plasma for four minutes creates a thin, stiff film. In this study, the thickness and mechanical properties of this surface-modified layer were determined. Using the phase image capabilities of a tapping-mode atomic-force microscope, the surface-modified region was distinguished from the bulk PDMS; specifically, it suggested a graded surface layer to a depth of about 200 nm. Load-displacement data for elastic indentation using a compliant AFM cantilever was analyzed as a plate bending on an elastic foundation to determine the elastic modulus of the surface (37 MPa). An applied uniaxial strain generated a series of parallel nano-cracks with spacing on the order of a few microns. Numerical analyses of this cracking phenomenon showed that the depth of these cracks was in the range of 300-600 nm and that the surface layer was extremely brittle, with its toughness in the range of 0.1-0.3 J/m(2).

106 citations


Journal ArticleDOI
TL;DR: The Maxwell-Wiechert equilibrium modulus provided the best agreement between nanoindentation and unconfined compression and showed an increase in modulus with each increasing cross-linker concentration, validating that nano indentation can discriminate between similar, low-modulus, hydrated samples.
Abstract: Hydrogels pose unique challenges to nanoindentation including sample preparation, control of experimental parameters, and limitations imposed by mechanical testing instruments and data analysis originally intended for harder materials. The artifacts that occur during nanoindentation of hydrated samples have been described, but the material properties obtained from hydrated nanoindentation have not yet been related to the material properties obtained from macroscale testing. To evaluate the best method for correlating results from microscale and macroscale tests of soft materials, nanoindentation and unconfined compression stress-relaxation tests were performed on poly-2-hydroxyethyl methacrylate (pHEMA) hydrogels with a range of cross-linker concentrations. The nanoindentation data were analyzed with the Oliver–Pharr elastic model and the Maxwell–Wiechert (j = 2) viscoelastic model. The unconfined compression data were analyzed with the Maxwell–Wiechert model. This viscoelastic model provided an excellent fit for the stress-relaxation curves from both tests. The time constants from nanoindentation and unconfined compression were significantly different, and we propose that these differences are due to differences in equilibration time between the microscale and macroscale experiments and in sample geometry. The Maxwell–Wiechert equilibrium modulus provided the best agreement between nanoindentation and unconfined compression. Also, both nanoindentation analyses showed an increase in modulus with each increasing cross-linker concentration, validating that nanoindentation can discriminate between similar, low-modulus, hydrated samples.

97 citations


Journal ArticleDOI
Qunfeng Cheng1, Jiaping Wang1, Kaili Jiang1, Qunqing Li1, Shoushan Fan1 
TL;DR: In this article, a method to fabricate continuous and aligned multiwalled carbon nanotube (CNT)/epoxy composites is presented, where the amount and alignment of the continuous multi-walled CNT sheets can be controlled to obtain a CNT/epoxy composite with high content of well-dispersed CNTs.
Abstract: A method to fabricate continuous and aligned multiwalled carbon nanotube (CNT)/epoxy composites is presented in this paper. CNT/epoxy composites were made by infiltrating an epoxy resin into a stack of continuous and aligned multiwalled CNT sheets that were drawn from super-aligned CNT arrays. By controlling the amount and alignment of the continuous multiwalled CNT sheets, a CNT/epoxy composite with high content of well-dispersed CNTs can be obtained. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results show that the thermal stability of these CNT/epoxy composites was not affected by the addition of CNTs. The mechanical properties and electrical properties of the CNT/epoxy composites were dramatically improved compared to pure epoxy, suggesting that the CNT/epoxy composites can serve as multifunctional materials with combined mechanical and physical properties.

92 citations


Journal ArticleDOI
TL;DR: In this paper, the structure evolution and oxidation behavior of ZrB2-SiC composites in air from room temperature to ultrahigh temperature were investigated using furnace testing, arc jet testing, and thermal gravimetric analysis (TGA).
Abstract: The structure evolution and oxidation behavior of ZrB2–SiC composites in air from room temperature to ultrahigh temperature were investigated using furnace testing, arc jet testing, and thermal gravimetric analysis (TGA). The oxide structure changed with the increasing temperature. SiC content has no apparent influence on the evolution of structure during the oxidation of ZrB2–SiC below 1600 °C. However, the evolution of structure for ZrB2–SiC above 1800 °C was significantly affected by the SiC content. The formation of the SiC depleted layer in the ZrB2–SiC system not only depends on the surrounding conditions of pressure and temperature but also on the structure distribution of the SiC in the ZrB2 matrix. The apparent recrystallization of the ZrO2 occurred above 1800 °C. The SiC content should be controlled at ∼16% in the ZrB2–SiC system for the ultrahigh-temperature application. The mechanisms of the structure evolution during oxidation in air were also analyzed.

90 citations


Journal ArticleDOI
TL;DR: In this paper, an existing palladium embedded-atom method potential was extended to construct a new Pd-H embedded atom method potential by normalizing the elemental embedding energy and electron density functions.
Abstract: Palladium hydrides have important applications. However, the complex Pd–H alloy system presents a formidable challenge to developing accurate computational models. In particular, the separation of a Pd–H system to dilute (α) and concentrated (β) phases is a central phenomenon, but the capability of interatomic potentials to display this phase miscibility gap has been lacking. We have extended an existing palladium embedded-atom method potential to construct a new Pd–H embedded-atom method potential by normalizing the elemental embedding energy and electron density functions. The developed Pd–H potential reasonably well predicts the lattice constants, cohesive energies, and elastic constants for palladium, hydrogen, and PdHx phases with a variety of compositions. It ensures the correct hydrogen interstitial sites within the hydrides and predicts the phase miscibility gap. Preliminary molecular dynamics simulations using this potential show the correct phase stability, hydrogen diffusion mechanism, and mechanical response of the Pd–H system.

Journal ArticleDOI
TL;DR: In this article, the performance limits of tandem and triple-junction, silicon-based solar cells were analyzed using computer simulations, where the authors used the optical simulator SunShine and the optoelectrical simulator ASA to study the scattering properties required, absorption in nonactive layers, antireflective coatings, and the crucial role of the wavelength-selective intermediate reflector on the performance of the solar cells.
Abstract: This article focuses on the modeling and simulation of thin-film silicon solar cells to obtain increased efficiency. Computer simulations were used to study the performance limits of tandem and triple-junction, silicon-based solar cells. For the analysis, the optical simulator SunShine, which was developed at Ljubljana University, and the optoelectrical simulator ASA, which was developed at Delft University of Technology, were used. After calibration with realistic optical and electrical parameters, we used these simulators to study the scattering properties required, the absorption in nonactive layers, antireflective coatings, and the crucial role of the wavelength-selective intermediate reflector on the performance of the solar cells. Careful current matching was carried out to explore whether a high photocurrent [i.e., more than 15 mA/cm2 for a tandem hydrogenated amorphous silicon (a-Si:H)/hydrogenated microcrystalline silicon (μc-Si:H) solar cell and 11 mA/cm2 for a triple-junction a-Si:H/amorphous silicon germanium (a-SiGe:H)/μc-Si:H solar cell] could be obtained. In simulations, the extraction of the charge carriers, the open-circuit voltage, and the fill factor of these solar cells were improved by optimizing the electrical properties of the layers and the interfaces: a p-doped, a-SiC layer with a larger band gap (EG > 2 eV) and buffer layers at p/i interfaces were used. Simulations demonstrated that a-Si:H/μc-Si:H solar cells could be obtained with a conversion efficiency of 15% or higher, and triple-junction a-Si:H/a-SiGe:H/μc-Si:H solar cells with an efficiency of 17%.

Journal ArticleDOI
TL;DR: In this paper, the authors calculated temperature-dependent hydrogen diffusion coefficients by a theoretical model incorporated with experimental data in a Mg-based system and accordingly the activation energy, and investigated the grain size effect on diffusion in nanoscale.
Abstract: Hydrogenation and dehydrogenation of metal hydrides are of great interest because of their potential in on-board applications for hydrogen vehicles. This paper aims to study hydrogen diffusion in metal hydrides, which is generally considered to be a controlling factor of hydrogenation/dehydrogenation. The present work first calculated temperature-dependent hydrogen diffusion coefficients by a theoretical model incorporated with experimental data in a Mg-based system and accordingly the activation energy. The grain size effect on diffusion in nanoscale was also investigated.

Journal ArticleDOI
TL;DR: In this paper, a detailed experimental investigation of the way in which light interacts with the ultrastructure of a representative centric diatom species, Coscinodiscus wailesii, was performed.
Abstract: Diatoms are well known for the intricately patterned nanostructure of their silica-based cell walls. To date, the optical properties of diatom cell-wall ultrastructures have largely gone uncharacterized experimentally. Here we report the results of a detailed experimental investigation of the way in which light interacts with the ultrastructure of a representative centric diatom species, Coscinodiscus wailesii. Light interaction both with individual valves and whole bivalves of the diatom C. wailesii was measured. Significant sixfold symmetric diffraction through the valve ultrastructure was observed in transmission and quantified to efficiencies that were found to be strongly wavelength dependent; approximately 80% for red, 30% for green, and 20% for blue light. While these results may potentially offer insight into the role of periodic nanostructure in diatom selection, they are also important for consideration in the design of biomimetic optics-based diatom applications.

Journal ArticleDOI
TL;DR: In this paper, pyrochlore compositions Gd2-yNdyZr2O7 (y = 0.0, 0.1,0.4, 0.,6, 1.0 and 2.0) were synthesized and their ionic conductivity was determined (100 Hz-15 MHz, 622-696 K).
Abstract: The pyrochlore compositions Gd2–yNdyZr2O7 (y = 0.0, 0.1, 0.4, 0.6, 1.0, 1.4, 1.6, and 2.0) were synthesized, and their ionic conductivity was determined (100 Hz–15 MHz, 622–696 K). The direct-current (dc) conductivity (σdc) varies upon Nd substitution at the Gd site, and a peaking effect in σdc was observed around y = 1.0. This indicates that a significant increase in conductivity can be obtained at moderately high temperatures by suitable doping at the Gd site with isovalent rare-earth ions like Nd. The extent of oxygen ion disorder determined from x-ray diffraction was found to decrease with increasing Nd content. The dc conductivity obeys the Arrhenius relation σdcT = σ0 exp(−E/kBT). The activation energy E and the preexponential factor σ0, which is a measure of the concentration of the mobile species, increase while going from the ordered Nd2Zr2O7 to the least ordered Gd2Zr2O7. These two processes presumably lead to the peaking of σdc at an intermediate Nd content. Our results also suggest that the cooperative motion of mobile ions does not contribute much to the increase in activation energy in this compound.

Journal ArticleDOI
TL;DR: In this paper, the effect of electropulsing treatment on the solution behavior of aged Mg alloy AZ61 strip was investigated using scanning electron microscope (SEM) and x-ray diffraction (XRD).
Abstract: The effect of electropulsing treatment (EPT) on the solution behavior of aged Mg alloy AZ61 strip was investigated using scanning electron microscope (SEM) and x-ray diffraction (XRD). It was found that EPT accelerated tremendously the dissolution of β phase into α matrix in an aged Mg alloy AZ61 strip. The dissolution of β phase took place in less than 4 s at relatively low temperature under EPT, compared with that in conventional heat treatment. A mechanism for rapid solid solution process during EPT was proposed based on the coupling of the thermal and athermal effects. The results in this investigation indicated that EPT played an important role in the nonequilibrium microstructural evolution in the alloy. It is supposed that EPT can provide a highly efficient approach for solid solution treatment of the alloy.

Journal ArticleDOI
TL;DR: In this paper, conductive and strong Cu-Ti3AlC2 composites were prepared at 850 °C and 1000 °C, respectively, and the reinforcements were uniformly distributed within the Cu matrix.
Abstract: Two kinds of composites (i.e., conductive and strong Cu–Ti3AlC2 composites) were prepared at 850 °C, while high-strength in situ Cu–TiCx composites were prepared by consolidation at 850 °C and then hot pressing at 1000 °C. In both kinds of composites, the reinforcements were uniformly distributed within the Cu matrix. In Cu–Ti3AlC2 composites, strengthening was achieved by the load transfer through a strong interfacial layer consisting of TiCx and Cu(Al), which was formed by the partial deintercalation of Al from Ti3AlC2. For the in situ Cu–TiCx composites, the higher modulus of TiCx as well as the highly twinned structure formed during processing contributed to the enhancement of strength. It was demonstrated that the deintercalation of Al from Ti3AlC2 formed substoichiometric Ti3AlxC2 (with x < 1), and no detrimental effect on the electrical conductivity was observed.

Journal ArticleDOI
TL;DR: In this paper, gold particles were fabricated by high-intensity femtosecond laser irradiation of gold (III) chloride trihydrate (HAuCl4) aqueous solution, and the structure and size distribution of the prepared particles were evaluated by transmission electron microscopy.
Abstract: Gold particles were fabricated by the high-intensity femtosecond laser irradiation of gold (III) chloride trihydrate (HAuCl4) aqueous solution. The structure and size distribution of the prepared particles were evaluated by transmission electron microscopy. The configuration of the gold particles varied with the concentration of the HAuCl4 aqueous solution. The mean particle size and size distribution were changed by the addition of polyvinylpyrrolidone (PVP), which acted as a dispersant, and monodispersed gold nanoparticles with a diameter of about 3 nm were successfully fabricated. The formation process of the nanoparticles is discussed in terms of the optical decomposition of molecules in the highly intense optical field generated by femtosecond laser irradiation.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the deposition of stoichiometric silicon carbide coatings with refined microstructure (grain size between 0.4 and 0.8 μm) and enhanced mechanical properties (Young's modulus of 448 GPa and hardness of 42 GPa) at 1300 °C by the addition of propene.
Abstract: Stoichiometric silicon carbide coatings the same as those used in the formation of TRISO (TRistructural ISOtropic) fuel particles were produced by the decomposition of methyltrichlorosilane in hydrogen. Fluidized bed chemical vapor deposition at around 1500 °C, produced SiC with a Young’s modulus of 362 to 399 GPa. In this paper we demonstrate the deposition of stoichiometric silicon carbide coatings with refined microstructure (grain size between 0.4 and 0.8 μm) and enhanced mechanical properties (Young’s modulus of 448 GPa and hardness of 42 GPa) at 1300 °C by the addition of propene. The addition of ethyne, however, had little effect on the deposition of silicon carbide. The effect of deposition temperature and precursor concentration were correlated to changes in the type of molecules participating in the deposition mechanism.

Journal ArticleDOI
TL;DR: In this article, the optical and electrical properties of indium tin oxide (ITO) thin films are investigated and the influence of the flux incident angle on the optical properties is investigated.
Abstract: The optical and electrical properties of “tilted” and “spiral” indium tin oxide (ITO) thin films are reported. The influence of the flux incident angle on the optical and electrical properties is investigated. When the flux incident angle is increased, both the refractive index and extinction coefficient of the film are decreased, but the resistivity is increased. Thus, the physical properties of the film can be modified over a wide range by adjusting the flux incident angle and substrate rotation scheme. It is suggested that the oblique angle deposition technique provides ITO films with more application possibilities by allowing their optical and electrical properties to be tailored.

Journal ArticleDOI
TL;DR: The microstructures of exoskeletons from Homarus americanus (American lobster) and Callinectes sapidus (Atlantic blue crab) were investigated to elucidate the mechanical behavior of such biological composites as mentioned in this paper.
Abstract: The microstructures of exoskeletons from Homarus americanus (American lobster) and Callinectes sapidus (Atlantic blue crab) were investigated to elucidate the mechanical behavior of such biological composites. Image analyses of the cross-sectioned exoskeletons showed that the two species each have three well-defined regions across the cuticle thickness where the two innermost regions (exocuticle and endocuticle) are load bearing. These regions consist of mineralized chitin fibers aligned in layers, where a gradual rotation of the fiber orientation of the layers results in repeating stacks. The exocuticle and endocuticle of the two species have similar morphology, but different thicknesses, number of layers, and number of stacks. Mechanics-based analyses showed that the morphology of the layered structure corresponds to a nearly isotropic structure. The cuticles are inter-stitched with pore canal fibers, running transversely to the layered structure. Mechanics-based analyses suggested that the pore canal fibers increase the interlaminar strength of the exoskeleton.

Journal ArticleDOI
TL;DR: In this article, the lattice parameters, room temperature shear and Young's moduli, and phonon thermal conductivities of Ti2AlC 0.5, N0.5 and Ti3Al(C0.9)2 solid solutions with those of their end members were compared.
Abstract: Herein we compare the lattice parameters, room temperature shear and Young’s moduli, and phonon thermal conductivities of Ti2AlC0.5N0.5 and Ti3Al(C0.5, N0.5)2 solid solutions with those of their end members, namely Ti2AlC, Ti2AlN, Ti3AlC2, and Ti4AlN2.9. In general, the replacement of C by N decreases the unit cell volumes and increases the elastic moduli and phonon thermal conductivities. The increase in the latter two properties, however, is sensitive to the concentrations of defects, most likely vacancies on one or more of the sublattices.

Journal ArticleDOI
TL;DR: In this article, the authors measured Young's modulus of osmium diboride (OsB2) and found that the hardness of OsB2 is highly dependent on the crystallographic orientation.
Abstract: Borides of high electron density metals such as Os show promise as hard materials. Arc-melting elemental osmium and boron under an argon atmosphere produced osmium diboride (OsB2). Both a Vickers diamond microindenter and a Berkovich nanoindenter were used to measure hardness. Vickers microindentation indicates that the hardness of OsB2 increases significantly with decreasing applied load. The average hardness reaches approximately 37 GPa as the applied load is lowered to 0.245 N. The hardness is found to be highly dependent on the crystallographic orientation. For the {010} grains, along the 〈100〉 direction, the average hardness is significantly higher than that in the orthogonal 〈001〉 direction. Cracks associated with pop-in events in the nanoindentation load–displacement curves are observed in the {010} grains. The measured Young’s modulus of OsB2 is 410 ± 35 GPa, which is comparable to that obtained from first-principles calculations.

Journal ArticleDOI
TL;DR: In this paper, the microstructure developed by LENS deposition of Cu47Ti33Zr11Ni8Si1 powder on a bulk metallic glass substrate, with nominal composition Zr58.5Nb2.8Cu15.6Ni12.8Al10.3, is investigated.
Abstract: Laser Engineered Net Shaping (LENS™) is a laser-assisted manufacturing process that offers the possibility of producing metallic coatings and components with highly nonequilibrium microstructures. In this work, the microstructure developed by LENS deposition of Cu47Ti33Zr11Ni8Si1 powder on a bulk metallic glass substrate, with nominal composition Zr58.5Nb2.8Cu15.6Ni12.8Al10.3, is investigated. Single-layer deposition results in the formation of an inhomogeneous but partially amorphous layer above a crystalline heat-affected zone. Elemental analysis of the deposited layer indicates incomplete mixing of the powder with the melt pool. The as-deposited alloy exhibits a single glass transition event and its primary crystallization event is consistent with the first crystallization temperature of the Cu-based powder. Subsequent remelting of this layer results in a still partially amorphous deposit with a uniform composition of (Zr + Nb)51.8Cu24.7Ti3.4Ni16.4Al3.7. The remelted layer exhibits a structural rearrangement immediately prior to the primary crystallization event, possibly associated with the formation of a quasicrystalline phase.

Journal ArticleDOI
Xiaojian Wang1, Yuncang Li1, J.G. Lin1, Peter Hodgson1, Cuie Wen1 
TL;DR: In this paper, the surface morphology and roughness of different oxide layers were measured by atomic force microscopy (AFM), and the surface energies were determined based on the Owens-Wendt (OW) methods.
Abstract: In the present study, pure titanium (Ti) plates were firstly treated to form various types of oxide layers on the surface and then were immersed into simulated body fluid (SBF) to evaluate the apatite-forming ability. The surface morphology and roughness of the different oxide layers were measured by atomic force microscopy (AFM), and the surface energies were determined based on the Owens–Wendt (OW) methods. It was found that Ti samples after alkali heat (AH) treatment achieved the best apatite formation after soaking in SBF for three weeks, compared with those without treatment, thermal or H2O2 oxidation. Furthermore, contact angle measurement revealed that the oxide layer on the alkali heat treated Ti samples possessed the highest surface energy. The results indicate that the apatite-inducing ability of a titanium oxide layer links to its surface energy. Apatite nucleation is easier on a surface with a higher surface energy.

Journal ArticleDOI
TL;DR: In this paper, the authors report on the synthesis and characterization of Cr2GeC, a member of the so-called Mn+1AXn (MAX) phase family of layered machinable carbides and nitrides.
Abstract: Herein we report on the synthesis and characterization of Cr2GeC, a member of the so-called Mn+1AXn (MAX) phase family of layered machinable carbides and nitrides Polycrystalline samples were synthesized by hot pressing pure Cr, Ge, and C powders at 1350 °C at ∼45 MPa for 6 h No peaks other than those associated with Cr2GeC and Cr2O3, in the form of eskolaite, were observed in the x-ray diffraction spectra The samples were readily machinable and fully dense The steady-state Vickers hardness was 25 ± 01 GPa The Young’s moduli measured in compression and by ultrasound were 200 ± 10 and 245 ± 3 GPa, respectively; the shear modulus and Poisson’s ratio deduced from the ultrasound results were 80 GPa and 029, respectively The ultimate compressive strength for a ∼20 μm grain size sample was 770 ± 30 MPa Samples compressively loaded from 300 to ∼570 MPa exhibited nonlinear, fully reversible, reproducible, closed hysteretic loops that dissipated ∼20% of the mechanical energy, a characteristic of the MAX phases, in particular, and kinking nonlinear elastic solids, in general The energy dissipated is presumably due to the formation and annihilation of incipient kink bands The critical resolved shear stress of the basal plane dislocations—estimated from our microscale model—is ∼22 MPa The incipient kink band and reversible dislocation densities, at the maximum stress of 568 MPa, are estimated to be 12 × 10−2 μm−3 and 10 × 1010 cm−2, respectively

Journal ArticleDOI
TL;DR: In this paper, an off-lattice, on-the-fly kinetic Monte Carlo (KMC) model was proposed to simulate stress-assisted diffusion and trapping of hydrogen by crystalline defects in iron.
Abstract: We present an off-lattice, on-the-fly kinetic Monte Carlo (KMC) model for simulating stress-assisted diffusion and trapping of hydrogen by crystalline defects in iron. Given an embedded atom (EAM) potential as input, energy barriers for diffusion are ascertained on the fly from the local environments of H atoms. To reduce computational cost, on-the-fly calculations are supplemented with precomputed strain-dependent energy barriers in defect-free parts of the crystal. These precomputed barriers, obtained with high-accuracy density functional theory calculations, are used to ascertain the veracity of the EAM barriers and correct them when necessary. Examples of bulk diffusion in crystals containing a screw dipole and vacancies are presented. Effective diffusivities obtained from KMC simulations are found to be in good agreement with theory. Our model provides an avenue for simulating the interaction of hydrogen with cracks, dislocations, grain boundaries, and other lattice defects, over extended time scales, albeit at atomistic length scales.

Journal ArticleDOI
TL;DR: In this paper, transmission electron microscopy of cross-sectioned bimetallic Cu/Sn thin-film specimens, confirm plastic deformation of the Sn grains due to the formation of Cu6Sn5.
Abstract: Although the driving force for the growth of Sn whiskers from the surface of Sn coatings on copper is thought to be internally generated stress due to the formation of Cu6Sn5 at the Cu/Sn interface, little is known about the nature of this internal stress and how it cracks the surface Sn oxide (an important precursor to whisker formation). Arguments based on elasticity alone do not appear to be sufficient and suggest an important role for plastic deformation. Direct observations, made by transmission electron microscopy of cross-sectioned bimetallic Cu/Sn thin-film specimens, confirm plastic deformation of the Sn grains due to the formation of Cu6Sn5. Dislocation motion and pile-up at the surface Sn oxide, rotation associated with subgrain boundary formation, interaction of the subgrain boundaries with the Sn surface, and diffusional processes are various mechanisms that can produce stress at the Sn surface and crack the Sn oxide.

Journal ArticleDOI
TL;DR: In this article, a 6.3 × 103 A/cm2 electron current was applied to molten Sn3.5Ag solder at 255 °C through two Cu electrodes, and the high current density caused rapid dissolution of the Cu cathode.
Abstract: The high local temperature in flip-chip solder joints of microprocessors has raised concerns that the solder, a low melting temperature alloy, might locally liquefy and consequently cause failure of the microprocessors. This article reports a highly interesting electromigration behavior when the solder is in the molten state. A 6.3 × 103 A/cm2 electron current was applied to molten Sn3.5Ag solder at 255 °C through two Cu electrodes. The high current density caused rapid dissolution of the Cu cathode. The dissolved Cu atoms were driven by electrons to the anode side and precipitated out as a thick, and sometimes continuous, layer of Cu6Sn5. The applied current caused the dissolution rate of the Cu cathode to increase by one order of magnitude. A major difference between the electromigration in the solid and molten state was identified to be the presence of different countering fluxes in response to electromigration. For electromigration in the molten state, the back-stress flux, which was operative for electromigration in the solid state, was missing, and instead a countering flux due to the chemical potential gradient was present. An equation for the chemical potential gradient, dμ/dx, required to balance the electromigration flux was derived to be dμ/dx = N°z*eρJ, where N° is Avogadro’s number, z* is the effective charge of Cu, e is the charge of an electron, ρ is the resistivity of the solder, and J is the electron current density.

Journal ArticleDOI
TL;DR: In this paper, BaTiO3/SrTiOO3 superlattices were grown by reactive molecular-beam epitaxy on four different substrates: TiO2-terminated (001) SrTiO 3, (101) DyScO3, ( 101) GdScO 3 and (101), SmSc O 3 and SmScO 4.
Abstract: Commensurate BaTiO3/SrTiO3 superlattices were grown by reactive molecular-beam epitaxy on four different substrates: TiO2-terminated (001) SrTiO3, (101) DyScO3, (101) GdScO3, and (101) SmScO3. With the aid of reflection high-energy electron diffraction (RHEED), precise single-monolayer doses of BaO, SrO, and TiO2 were deposited sequentially to create commensurate BaTiO3/SrTiO3 superlattices with a variety of periodicities. X-ray diffraction (XRD) measurements exhibit clear superlattice peaks at the expected positions. The rocking curve full width half-maximum of the superlattices was as narrow as 7 arc s (0.002°). High-resolution transmission electron microscopy reveals nearly atomically abrupt interfaces. Temperature-dependent ultraviolet Raman and XRD were used to reveal the paraelectric-to-ferroelectric transition temperature (TC). Our results demonstrate the importance of finite size and strain effects on the TC of BaTiO3/SrTiO3 superlattices. In addition to probing finite size and strain effects, these heterostructures may be relevant for novel phonon devices, including mirrors, filters, and cavities for coherent phonon generation and control.