scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Human Reproduction in 2014"


Journal ArticleDOI
TL;DR: An immunohistochemistry-based analysis is presented, showing the localization of corresponding proteins in different cell types and various stages of spermatogenesis, for 62 genes expressed at >50-fold higher levels in testis when compared with other tissues.
Abstract: The testis' function is to produce haploid germ cells necessary for reproduction. Here we have combined a genome-wide transcriptomics analysis with immunohistochemistry-based protein profiling to c ...

162 citations


Journal ArticleDOI
TL;DR: It is argued that information about sperm evolution gained from non-human animals has enormous potential to further the understanding of the factors that impact human fertility.
Abstract: Sperm experience intense and varied selection that dramatically impacts the evolution of sperm quality. Selection acts to ensure that sperm are fertilization-competent and able to overcome the many challenges experienced on their way towards eggs. However, simply being able to fertilize an egg is not enough to ensure male fertility in most species. Owing to the prevalence of female multiple mating throughout the animal kingdom, successful fertilization requires sperm to outcompete rival sperm. In addition, females can actively influence sperm quality, storage or utilization to influence male fertility. This review provides an overview of how these selective forces influence the evolution of sperm quality. After exploring the link between sperm traits and male fertility, we examine how post-mating competition between rival ejaculates influences the evolution of sperm quality. We then describe how complex genetic, social and sexual interactions influence sperm quality, focusing on the importance of seminal fluid and interactions between sperm and the female's reproductive tract. In light of the complexities of selection on sperm traits, greater use of multivariate approaches that incorporate male-male, sperm-sperm and sperm-female interactions to study sperm quality will enhance our understanding of how selection acts on sperm traits and factors influencing male fertility. Because the metric of male reproductive success--fertilization--is the same across the animal kingdom, we argue that information about sperm evolution gained from non-human animals has enormous potential to further our understanding of the factors that impact human fertility.

159 citations


Journal ArticleDOI
TL;DR: It is confirmed that, at the cleavage stage, chromosome abnormalities have little if any effect on morphological scores assigned using traditional criteria, and in the case of the most clinically relevant aneuploidies there was no detectable effect on morphology at any preimplantation stage.
Abstract: Morphological assessments are the main way in which fertility clinics select in vitro generated embryo(s) for transfer to the uterus. However, it is widely acknowledged that the microscopic appearance of an embryo is only weakly correlated with its viability. Furthermore, the extent to which morphology is affected by aneuploidy, a genetic defect common in human preimplantation embryos, remains unclear. Aneuploidy is of great relevance to embryo selection as it represents one of the most important causes of implantation failure and miscarriage. The current study aimed to examine whether morphological appearance can assist in identifying embryos at risk of aneuploidy. Additionally, the data produced sheds light on how chromosomal anomalies impact development from the cleavage to the blastocyst stage. A total of 1213 embryos were examined. Comprehensive chromosome analysis was combined with well-established criteria for the assessment of embryo morphology. At the cleavage stage, chromosome abnormalities were common even amongst embryos assigned the best morphological scores, indicating that aneuploidy has little effect on microscopic appearance at fixed time points up until Day 3 of development. However, at the blastocyst stage aneuploidies were found to be significantly less common among embryos of optimal morphological quality, while such abnormalities were overrepresented amongst embryos considered to be of poor morphology. Despite the link between aneuploidy and blastocyst appearance, many chromosomally abnormal embryos were able to achieve the highest morphological scores. In particular, blastocysts affected by forms of aneuploidy with the greatest capacity to produce clinical pregnancies (e.g. trisomy 21) were indistinguishable from euploid embryos. The sex ratio was seen to be equal throughout preimplantation development. Interestingly, however, females were overrepresented amongst the fastest growing cleavage-stage embryos, whereas a sex-related skew in the opposite direction was noted for the most rapidly developing blastocysts. In summary, this study confirms that, at the cleavage stage, chromosome abnormalities have little if any effect on morphological scores assigned using traditional criteria. At the blastocyst stage some forms of aneuploidy begin to affect microscopic appearance, but in most instances the impact is subtle. In the case of the most clinically relevant aneuploidies (those capable of forming a pregnancy) there was no detectable effect on morphology at any preimplantation stage.

143 citations


Journal ArticleDOI
TL;DR: It is demonstrated that inhibition of PTEN with bpV(HOpic) affects human ovarian follicle development by promoting the initiation of follicle growth and development to the secondary stage, as in rodent species, but severely compromises the survival of isolated secondary follicles.
Abstract: In the mammalian ovary a small number of follicles are steadily recruited from the quiescent pool to undergo development. Follicle loss, maintenance and growth are strictly controlled by complex molecular interactions including the phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signalling pathway. Stimulation of PI3K promotes phosphorylation of Akt resulting in follicle survival and activation of growth whereas this pathway is suppressed by the actions of the phosphatase and tensin homologue (PTEN). The aim of this study was to determine the effect of dipotassium bisperoxo(5-hydroxypyridine-2-carboxyl)oxovanadate (bpV), a reversible inhibitor of PTEN, on the activation, survival and development of human ovarian follicles in vitro. Biopsied ovarian tissue fragments were obtained from 17 women aged 23-46 years and exposed to 1 mM bpV(HOpic) (n ¼ 146) or control medium (n ¼ 128) for 24 h. Media were then replaced with control medium and all tissue incubated for a further 5 days. Ovarian tissue from each treatment group was fixed after the initial 24 h culture period and phosphorylated Akt was quantified by western blotting. After 6 days incubation all tissue fragments were inspected under light microscopy and any secondary follicles ≥100 mm isolated. Isolated follicles were cultured individually in control medium supplemented with 100 ng/ml recombinant human activin A. Tissue fragments without follicles suitable for isolation were fixed and processed for histological and immunohistochemical analysis. During 6 days culture, follicle activation occurred in tissue samples from both treatment groups but with significantly more follicles progressing to the secondary stage of development in the presence of 1 mM bpV(HOpic) compared with control (31 versus 16%; P , 0.05). Increased ac- tivation was associated with increased Akt phosphorylation and increased nuclear export of FOXO3. However isolated and cultured follicles that had been exposed to bpV(HOpic) showed limited growth and reduced survival compared with follicles from control fragments (P , 0.05). This study demonstrates that inhibition of PTEN with bpV(HOpic) affects human ovarian follicle development by promoting the initiation of follicle growth and development to the secondary stage, as in rodent species, but severely compromises the survival of isolated secondary follicles.

141 citations


Journal ArticleDOI
TL;DR: It is hypothesized that stem/progenitor cells present in shedding endometrium may have a role in the pathogenesis of early-onset endometriosis through retrograde neonatal uterine bleeding.
Abstract: The pathogenesis of early-onset endometriosis has recently been revisited, sparked by the discovery of endometrial stem/progenitor cells and their possible role in endometriosis, and because maternal pregnancy hormone withdrawal following delivery induces uterine bleeding in the neonate. The neonatal uterus has a large cervix to corpus ratio which is functionally blocked with mucous, supporting the concept of retrograde shedding of neonatal endometrium. Only 5% show overt bleeding. Furthermore, the presence of endometriosis in pre-menarcheal girls and even in severe stage in adolescents supports the theory that early-onset endometriosis may originate from retrograde uterine bleeding soon after birth. Endometrial stem/progenitor cells have been identified in menstrual blood suggesting that they may also be shed during neonatal uterine bleeding. Thus, we hypothesized that stem/progenitor cells present in shedding endometrium may have a role in the pathogenesis of early-onset endometriosis through retrograde neonatal uterine bleeding. During the neonatal and pre-pubertal period, shed endometrial stem/progenitor cells are postulated to survive in the pelvic cavity in the absence of circulating estrogens supported by niche cells also shed during neonatal uterine bleeding. According to this hypothesis, during thelarche, under the influence of rising estrogen levels, endometrial stem/progenitor cells proliferate and establish ectopic endometrial lesions characteristic of endometriosis. This New Research Horizon review builds on recent discussions on the pathogenesis of early-onset endometriosis and raises new avenues for research into this costly condition.

136 citations


Journal ArticleDOI
TL;DR: It is demonstrated that sex-biased gene expression in the normal human placenta occurs across the genome and includes genes that are central to growth, development and the maintenance of pregnancy.
Abstract: As males and females share highly similar genomes, the regulation of many sexually dimorphic traits is constrained to occur through sex-biased gene regulation. There is strong evidence that human males and females differ in terms of growth and development in utero and that these divergent growth strategies appear to place males at increased risk when in sub-optimal conditions. Since the placenta is the interface of maternal -fetal exchange throughout pregnancy, these developmental differences are most likely orchestrated by differential placental function. To date, progress in this field has been hampered by a lack of genome-wide information on sex differences in placental gene expression. Therefore, our motivation in this study was to characterize sex-biased gene expression in the human placenta. We obtained gene expression data for .300 non-pathological placenta samples from 11 microarray datasets and applied mapping-based array probe re-annotation and inverse-variance meta-analysis methods which showed that .140 genes (false discovery rate (FDR) ,0.05) are differentially expressed between male and female placentae. A majority of these genes (.60%) are autosomal, many of which are involved in high-level regulatory pro- cesses such as gene transcription, cell growth and proliferation and hormonal function. Of particular interest, we detected higher female expres- sion from all seven genes in the LHB-CGB cluster, which includes genes involved in placental development, the maintenance of pregnancy and maternal immune tolerance of the conceptus. These results demonstrate that sex-biased gene expression in the normal human placenta occurs across the genome and includes genes that are central to growth, development and the maintenance of pregnancy.

131 citations


Journal ArticleDOI
TL;DR: A new female germline stem cell line from post-natal rats is established by immunomagnetic sorting for Fragilis, which showed a normal karyotype, high telomerase activity, and a consistent gene expression pattern of primordial germ cells after 1 year of culture.
Abstract: Germline stem cell lines possess the abilities of self-renewal and differentiation, and have been established from both mouse and human ovaries. Here, we established a new female germline stem cell (FGSC) line from post-natal rats by immunomagnetic sorting for Fragilis, which showed a normal karyotype, high telomerase activity, and a consistent gene expression pattern of primordial germ cells after 1 year of culture. Using an in vitro differentiation system, the FGSC line could differentiate into oocytes. After liposome-based transfection with green fluorescent protein (GFP) or fat-1 vectors, the FGSCs were transplanted into the ovaries of infertile rats. The transplanted FGSCs underwent oogenesis, and the rats produced offspring carrying the GFP or fat-1 transgene after mating with wild-type male rats. The efficiency of gene transfer was 27.86-28.00%, and 2 months was needed to produce transgenic rats. These findings have implications in biomedical research and potential applications in biotechnology.

106 citations


Journal ArticleDOI
TL;DR: The study of the mRNA gene expression levels of the loci located in the common region of duplication showed that HM13, ID1, BCL2L1, KIF3B and the immature form of the micro-RNA miR-1825 were up-regulated in mutant cells, suggesting resistance to apoptosis supposes a significant advantage for the mutant cells.
Abstract: Gain of 20q11.21 is a chromosomal abnormality that is recurrently found in human pluripotent stem cells and cancers, strongly suggesting that this mutation confers a proliferative or survival advantage to these cells. In this work we studied three human embryonic stem cell (hESC) lines that acquired a gain of 20q11.21 during in vitro culture. The study of the mRNA gene expression levels of the loci located in the common region of duplication showed that HM13, ID1, BCL2L1, KIF3B and the immature form of the micro-RNA miR-1825 were up-regulated in mutant cells. ID1 and BCL2L1 were further studied as potential drivers of the phenotype of hESC with a 20q11.21 gain. We found no increase in the protein levels of ID1, nor the downstream effects expected from over-expression of this gene. On the other hand, hESC with a gain of 20q11.21 had on average a 3-fold increase of Bcl-xL (the anti-apoptotic isoform of BCL2L1) protein levels. The mutant hESC underwent 2- to 3-fold less apoptosis upon loss of cell-to-cell contact and were � 2-fold more efficient in forming colonies from a single cell. The key role of BCL2L1 in this mutation was further confirmed by transgenic over-expression of BCL2L1 in the wild-type cells, leading to apoptosis-resistant cells, and BCL2L1-knock-down in the mutant hESC, resulting in a restoration of the wild-type phenotype. This resistance to apoptosis supposes a significant advantage for the mutant cells, explaining the high frequency of gains of 20q11.21 in human pluripotent stem cells.

93 citations


Journal ArticleDOI
TL;DR: Major alterations in the local ovarian immune system of PCOS ovaries are indicated, which may have implications for the PCOS-related defects in the inflammation-like ovulatory process and for the susceptibility to acquire the inflammatory state of ovarian hyperstimulation syndrome.
Abstract: Polycystic ovary syndrome (PCOS) is the most common female endocrine disorder. Ovarian changes in PCOS women are well characterized by ultrasound. However, the ovarian pathophysiology is not fully understood. The aim of this study was to characterize the expression, in both the central ovarian stroma and in granulosa cells (GCs), of a number of genes, including several inflammation-related genes, which have been hypothesized to be involved in the pathophysiology of PCOS. Biopsies of the central ovarian stroma were obtained from PCOS women (Rotterdam criteria) and from normally ovulating women in follicular phase. GCs were retrieved from PCOS-women and non-PCOS women, undergoing in vitro maturation. The expressions of 57 genes were analyzed by quantitative-PCR using a low-density-gene array. The main outcome measures were over-expression or under-expression of the specific genes. The results showed that in the central stroma of PCOS ovaries, five inflammation-related genes (CCL2, IL1R1, IL8, NOS2, TIMP1), the leukocyte marker CD45, the inflammation-related transcription factor RUNX2 and the growth factor AREG were under-expressed. The growth factor DUSP12 and the coagulation factor TFPI2 were over-expressed. In the GC of PCOS, all of the differentially expressed genes were over-expressed; the inflammation-related IL1B, IL8, LIF, NOS2 and PTGS2, the coagulation-related F3 and THBS1, the growth factors BMP6 and DUSP12, the permeability-related AQ3 and the growth-arrest-related GADD45A. In conclusion, the results indicate major alterations in the local ovarian immune system of PCOS ovaries. This may have implications for the PCOS-related defects in the inflammation-like ovulatory process and for the susceptibility to acquire the inflammatory state of ovarian hyperstimulation syndrome.

87 citations


Journal ArticleDOI
TL;DR: Data indicate that the active TGF-β superfamily pathways in early human folliculogenesis consist of primarily GDF9 combined with possible synergistic effects of BMP15 through the BMPR2 and intracellular activation of SMAD3 and SMAD4, and that AMH and INHBB are engaged in intrafollicular events from the onset of follicular growth.
Abstract: In mammals, members of the transforming growth factor-beta (TGF-β) superfamily are known to have key roles in the regulation of follicular growth and development. The aim of the study was to evaluate the expression of TGF-β superfamily growth factors, their receptors, downstream SMAD signalling molecules and TGF-β/bone morphogenetic protein (BMP) antagonists during early human folliculogenesis. Human pre-antral follicles were enzymatically isolated from surplus ovarian tissue obtained from women having ovarian cortical tissue frozen for fertility preservation. A total of 348 human pre-antral follicles, ranging from 40 to 200 µm in diameter, were isolated from ovarian tissue obtained from 15 women, aged 24-34 years. Isolated pre-antral follicles were grouped according to diameter in five size-matched populations spanning the primordial, primary and secondary stage follicles and analysed by whole-genome microarray analysis. Selected proteins/genes were analysed by immunocytochemistry and quantitative RT-PCR. TGF-β superfamily genes with overall highest mRNA expressions levels included growth differentiation factors 9 (GDF9), BMP15, BMP6, BMP-receptor-2 (BMPR2), anti-Mullerian hormone receptor 2 (AMHR2), TGFβR3, inhibin-α (INHA) and intracellular SMAD3 and SMAD4. Moreover, genes which were differentially expressed from the primordial to the late secondary stage follicles included GDF9, BMP15, AMH, INHBB, TGFβR3, SMAD4 and antagonists Follistatin (FST) and GREM1. Collectively, these data indicate that the active TGF-β superfamily pathways in early human folliculogenesis consist of primarily GDF9 combined with possible synergistic effects of BMP15 through the BMPR2 and intracellular activation of SMAD3 and SMAD4, and that AMH and INHBB are engaged in intrafollicular events from the onset of follicular growth. Moreover, the presence of multiple TGF-β/BMP antagonists imply that certain growth factors are subjected to local regulation on different levels that address another important level of intraovarian regulation of follicle development in humans.

84 citations


Journal ArticleDOI
TL;DR: A review of the transcriptomic data obtained from oocytes of different quality as well as interesting avenues to explore in order to improve our understanding of oocyte competence is provided in this paper.
Abstract: Various morphological and cytological traits of oocytes and their surrounding cumulus cells may be used to select oocytes for assisted reproduction. However, even with careful selection, successful IVF and subsequent embryo development remain uncertain. The factors that ensure oocyte competence are unclear and other approaches to assessing developmental potential must be explored. With the constant development of the molecular toolbox, genomic/transcriptomic analysis is becoming a more and more interesting approach to understand oocyte quality on the basis of RNA composition. Using bovine and mouse models as well as human oocytes of known developmental potential, various efforts are underway to characterize the mRNA profile of the competent oocyte using microarray technology. The proliferation of gene expression data sets raises new opportunities to identify the mechanisms involved in this complex phenotype, which should lead to improved techniques of assisted reproduction. Although several molecular markers of oocyte quality are known, translating these into cellular functions remains challenging, largely due to the poor correlation between mRNA level and protein synthesis. Unlike most somatic cells, the oocyte can store mRNA for days, with transcriptional activity remaining at a halt during the 4-5 days beginning before ovulation and ending with embryonic genome activation. This review provides an overview of the transcriptomic data obtained from oocytes of different quality as well as interesting avenues to explore in order to improve our understanding of oocyte competence.

Journal ArticleDOI
TL;DR: Flow cytometry is used to show that a subpopulation of human sperm indeed undergo a plasma membrane hyperpolarization upon in vitro capacitation, and to show through immunoblotting that Slo3 channels are present in the human sperm membrane.
Abstract: Sperm capacitation is a complex and indispensable physiological process that spermatozoa must undergo in order to acquire fer- tilization capability. Spermatozoa from several mammalian species, including mice, exhibit a capacitation-associated plasma membrane hyperpo- larization, which is necessary for the acrosome reaction to occur. Despite its importance, this hyperpolarization event has not been adequately examined in human sperm. In this report we used flow cytometry to show that a subpopulation of human sperm indeed undergo a plasma mem- brane hyperpolarization upon in vitro capacitation. This hyperpolarization correlated with two other well-characterized capacitation parameters, namely an increase in intracellular pH and Ca 2+ concentration, measured also by flow cytometry. We found that sperm membrane hyperpolar- ization was completely abolished in the presence of a high external K + concentration (60 mM), indicating the participation of K + channels. In order to identify, which of the potential K + channels were involved in this hyperpolarization, we used different K + channel inhibitors including charybdotoxin, slotoxin and iberiotoxin (which target Slo1) and clofilium (a more specific blocker for Slo3). All these K + channel antagonists inhibited membrane hyperpolarization to a similar extent, suggesting that both members of the Slo family may potentially participate. Two very recent papers recorded K + currents in human sperm electrophysiologically, with some contradictory results. In the present work, we show through immunoblotting that Slo3 channels are present in the human sperm membrane. In addition, we found that human Slo3 channels expressed in CHO cells were sensitive to clofilium (50 mM). Considered altogether, our data indicate that Slo1 and Slo3 could share the prepon- derant role in the capacitation-associated hyperpolarization of human sperm in contrast to what has been previously reported for mouse sperm, where Slo3 channels are the main contributors to the hyperpolarization event.

Journal ArticleDOI
TL;DR: The mtDNA/gDNA ratio in the Day 3 embryo secretome, in combination with morphological grading, may be a novel, non-invasive, early biomarker to improve identification of viable embryos with high developmental potential.
Abstract: In assisted reproduction technology, embryo competence is routinely evaluated on morphological criteria. Over the last decade, efforts in improving non-invasive embryo assessment have looked into the secretome of embryos. Human embryos release genomic DNA (gDNA) and mitochondrial DNA (mtDNA) into the culture medium, and the mtDNA/gDNA ratio is significantly correlated with embryo fragmentation. Here, we investigate whether mtDNA/gDNA ratio in embryo spent medium is correlated with blastulation potential and implantation. The mtDNA/gDNA ratio was assessed in 699 Day 3 culture media by quantitative polymerase chain reaction (qPCR) to investigate its correlation with embryo morphology, blastocyst development and implantation. A logistic regression model evaluated whether mtDNA/gDNA ratio in the secretome may improve the prediction of blastulation. We found that embryos that successfully developed into blastocysts exhibited a significantly higher mtDNA/gDNA ratio in the culture medium compared with those that arrest (P = 0.0251), and mtDNA/gDNA, combined with morphological grading, has the potential to predict blastulation better than morphology alone (P = 0.02). Moreover, mtDNA/gDNA ratio was higher in the media from good-quality embryos that reached the full blastocyst stage on Day 5 compared with those that developed more slowly (P < 0.0001). With respect to blastocyst morphology, higher trophectoderm quality was associated with a higher mtDNA/gDNA ratio in the culture medium. Finally, a high mtDNA/gDNA ratio in spent medium was associated with successful implantation outcome (P = 0.0452) of good-quality embryos. In summary, the mtDNA/gDNA ratio in the Day 3 embryo secretome, in combination with morphological grading, may be a novel, non-invasive, early biomarker to improve identification of viable embryos with high developmental potential.

Journal ArticleDOI
TL;DR: Data suggest that uNK cells coordinate GD-appropriate phases of decidual angiogenesis, which in turn paces progressive changes in early implant sites that support normal fetal growth, which could explain the importance of CD56(bright) decidually NK cell activation to pregnancy success.
Abstract: Pregnancy involves progressive relationship changes between conceptus-derived trophoblasts and maternal decidual vessels and leukocytes. Uterine natural killer (uNK) cells, the dominant leukocytes in early human and mouse decidua, have late gestational cardio-protective roles through mid-gestational initiation of decidual spiral arterial modification. The earlier gestational functions of uNK cells are unknown. Comparisons of gestation days (GD) 6.5 -9.5 implant sites from allogeneically mated alymphoid or normal BALB/c mice (Rag2 2/2 Il2rg 2/2 ; NK-T-B- versus +/+) by whole mount immunohistochemistry revealed delays in Rag2 2/2 Il2rg 2/2 uterine lumen closure, trophoblast invasion and conceptus development. Also delayed were onset of mesometrial angiogenesis and pruning of neo-vascular networks in decidua basalis. This phenotype was fully reversed in BALB/c-Rag2 2/2 Il2rg 2/2 pregnancies that followed adoptive Rag2 2/2 (NK+B-T-) marrow transfer. These data suggest that uNK cells coordinate GD-appropriate phases of decidual angiogenesis, which in turn paces progressive changes in early implant sites that support normal fetal growth. Similar roles for human CD56 bright decidual NK cells could explain the importance of CD56 bright

Journal ArticleDOI
TL;DR: This comprehensive review article compares and discusses telomere length and telomerase activity in oocytes, granulosa cells and early embryos in different mammalian species including mice, bovines and humans.
Abstract: Telomeres are located at the ends of all eukaryotic chromosomes and protect them from deleterious events such as inappropriate DNA repair, illegitimate recombination or improper segregation of the chromosomes during mitotic or meiotic divisions. However, telomeres gradually shorten primarily due to successive rounds of genomic DNA replication and also as the result of the adverse effects of oxidative stress, genotoxic agents, diseases related to ageing and environmental factors on the nuclear materials of dividing or non-dividing cells. Germline cells, proliferative granulosa cells, early embryos, stem cells, highly proliferative somatic cells and many cancer cells contain the enzyme telomerase so that they are capable of elongating the shortened telomeres. Although numerous studies have revealed the length of telomeres and telomerase activity in oocytes, granulosa cells and early embryos, only a few studies have analyzed and compared the work performed on distinct mammalian species. In this comprehensive review article, we compare and discuss telomere length and telomerase activity in oocytes, granulosa cells and early embryos in different mammalian species including mice, bovines and humans.

Journal ArticleDOI
TL;DR: The results confirm that most fibroids are derived from a single cell, and for the first time demonstrates that these clonal cells differentiate into fibroblast and SMC subpopulation as the fibroid grows.
Abstract: Uterine fibroids are conventionally defined as clonally derived benign tumours from the proliferation of a single smooth muscle cell (SMC). We have previously identified fibroblast-like cells in fibroids, the presence of which raises the question as to whether all cells within the fibroid have the same clonal origin. The first aim of this study was to develop a fluorescence-activated cell sorting (FACS)-based method to isolate different cell types from human myometrium and fibroid tissues. Secondly, we aimed to use X chromosome inactivation analysis to determine the clonality of cell subpopulations isolated from myometrial and fibroid tissues. Human myometrium and fibroid tissues were collected from women undergoing hysterectomy. Immunohistochemistry (IHC) and flow cytometry confirmed that in addition to SMCs, fibroblasts constitute a significant proportion of cells in human myometrium and fibroid tissues. FACS based on CD90 and ALDH1 reliably separated cells into three myometrial and four fibroid subpopulations: SMCs, vascular smooth muscle cells and two fibroblast subsets. Clonality was first determined by X chromosome inactivation using the classic DNA methylation-sensitive HUMARA assay. Data from this assay were highly variable, with only a quarter of samples meeting the definition of clonal fibroid and non-clonal myometrium. However, using an RNA-based X chromosome inactivation HUMARA assay, we were able to demonstrate clonality of all cellular constituents of most fibroids. Our results confirm that most fibroids are derived from a single cell, and for the first time demonstrates that these clonal cells differentiate into fibroblast and SMC subpopulation as the fibroid grows.

Journal ArticleDOI
TL;DR: It is argued that sperm competition has been an important selection pressure acting on multiple aspects of spermatogenesis, causing variation in the number and morphology of sperm produced, and in the molecular and cellular processes by which this happens.
Abstract: Spermatogenesis is a long and complex process that, despite the shared overall goal of producing the male gamete, displays striking amounts of interspecific diversity. In this review, we argue that sperm competition has been an important selection pressure acting on multiple aspects of spermatogenesis, causing variation in the number and morphology of sperm produced, and in the molecular and cellular processes by which this happens. We begin by reviewing the basic biology of spermatogenesis in some of the main animal model systems to illustrate this diversity, and then ask to what extent this variation arises from the evolutionary forces acting on spermatogenesis, most notably sperm competition. We explore five specific aspects of spermatogenesis from an evolutionary perspective, namely: (i) interspecific diversity in the number and morphology of sperm produced; (ii) the testicular organizations and stem cell systems used to produce them; (iii) the large number and high evolutionary rate of genes underpinning spermatogenesis; (iv) the repression of transcription during spermiogenesis and its link to the potential for haploid selection; and (v) the phenomenon of selection acting at the level of the germline. Overall we conclude that adopting an evolutionary perspective can shed light on many otherwise opaque features of spermatogenesis, and help to explain the diversity of ways in which males of different species perform this fundamentally important process.

Journal ArticleDOI
TL;DR: The existence of species differences for mammalian DNA methylation enzymes is confirmed and the spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved.
Abstract: DNA methylation is a key epigenetic modification which is essential for normal embryonic development. Major epigenetic repro- gramming takes place during gametogenesis and in the early embryo; the complex DNA methylation patterns are established and maintained by DNA methyltransferases (DNMTs). However, the influence of assisted reproductive technologies (ART) on DNA methylation reprogramming enzymes has predominantly been studied in mice and less so in human oocytes and embryos. The expression and localization patterns of the four known DNMTs were analysed in human oocytes and IVF/ICSI embryos by immunocytochemistry and compared between a reference group of good quality fresh embryos and groups of abnormally developing embryos or embryo groups after cryopreservation. In humans, DNMT1o rather than DNMT1s seems to be the key player for maintaining methylation in early embryos. DNMT3b, rather than DNMT3a and DNMT3L, appears to ensure global DNA remethylation in the blastocysts before implantation. DNMT3L, an important regulator of maternal imprint methylation in mouse, was not detected in human oocytes (GV, MI and MII stage). Our study confirms the existence of species differences for mammalian DNA methylation enzymes. In poor quality fresh embryos, the switch towards nuclear DNMT3b expression was delayed and nuclear DNMT1, DNMT1s and DNMT3b expression was less common. Compared with the reference embryos, a smaller number of cryopreserved embryos showed nuclear DNMT1, while a delayed switch to nuclear DNMT3b and an extended DNMT1s temporal expression pattern were also observed. The spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved. Further research must be performed in order to understand whether the potentially disturbed embryonic DNMT expression after cryopreservation has any long-term developmental consequences.

Journal ArticleDOI
TL;DR: It is shown that there are inherent differences between E-Men SCs and NE-MenSCs, which propose the key role MenSCs could play in the pathogenesis of endometriosis and further support the retrograde and stem cell theories of endometricriosis.
Abstract: Retrograde flow of menstrual blood cells during menstruation is considered as the dominant theory for the development of endometriosis. Moreover, current evidence suggests that endometrial-derived stem cells are key players in the pathogenesis of endometriosis. In particular, endometrial stromal stem cells have been suggested to be involved in the pathogenesis of this disease. Here, we aimed to use menstrual blood, as a novel source of endometrial stem cells, to investigate whether stromal stem cells from endometriosis (E-MenSCs) and non-endometriosis (NE-MenSCs) women differed regarding their morphology, CD marker expression pattern, proliferation, invasion and adhesion capacities and their ability to express certain immunomodulatory molecules. E-MenSCs were morphologically different from NE-MenSCs and showed higher expression of CD9, CD10 and CD29. Furthermore, E-MenSCs had higher proliferation and invasion potentials compared with NE-MenSCs. The amount of indoleamine 2,3-dioxygenase-1 (IDO1) and cyclooxygenase-2 (COX-2) in E-MenSCs co-cultured with allogenic peripheral blood mononuclear cells (PBMCs) was shown to be higher both at the gene and protein levels, and higher IDO1 activity was detected in the endometriosis group. However, NE-MenSCs revealed increased concentrations of forkhead transcription factor-3 (FOXP3) when compared with E-MenSCs. Nonetheless, interferon (IFN)-γ, Interleukin (IL)-10 and monocyte chemoattractant protein-1 (MCP-1) levels were higher in the supernatant of E-MenSCs-PBMC co-cultures. Here, we showed that there are inherent differences between E-MenSCs and NE-MenSCs. These findings propose the key role MenSCs could play in the pathogenesis of endometriosis and further support the retrograde and stem cell theories of endometriosis. Hence, considering its renewable and easily available nature, menstrual blood could be viewed as a reliable and inexpensive material for studies addressing the cellular and molecular aspects of endometriosis.

Journal ArticleDOI
TL;DR: Evidence is provided for the molecular mechanism of IL-33 in promoting proliferation and invasiveness of DSCs by up-regulation of CCL2/CCR2 via NF-κB and ERK1/2 signal pathways and thus contributes insight to the potential ofIL-33 involved in successful pregnancy via inducing D SCs mitosis and invasion.
Abstract: Interleukin (IL)-33, a newly described member of the IL-1 family, has been reported to facilitate primary tumor progression and metastatic dissemination. However, its biological function on decidual stromal cells (DSCs) remains unclear. In this study, we tested the hypothesis whether IL-33 promotes proliferation and invasion of DSCs, and the possible mechanism. IL-33 and its orphan receptor ST2 was found to be co-expressed by DSCs in human first-trimester pregnancy. Addition of IL-33, enhanced the proliferation and invasion of DSCs in a dosage-dependent manner, concomitantly with increasing expression of proliferation relative gene (PCNA, survivin) and invasion relative gene (titin, MMP2). Blocking IL-33/ST2 signaling by soluble sST2 apparently abolished the stimulatory effect on the proliferation, invasiveness and related gene expression in DSCs. We also demonstrated that chemokines CCL2/CCR2 was significantly increased with IL-33 administration. Moreover, inhibition of CCL2/CCR2 activation using CCL2 neutralizing antibody or CCR2 blocker prevented IL-33-stimulated proliferation and invasiveness capacity of DSCs. Increasing phosphorylation of nuclear factor NF-κB p65 and extracellular signal-regulated kinases ERK1/2 after treatment with IL-33 was confirmed by western blotting. And the IL-33-induced CCL2/CCR2 expression was abrogated by treatment with the NF-κB inhibitor BAY 11-7082 or ERK1/2 inhibitor U0126. Finally, we showed that decreased IL-33/ST2 expression was observed in DSCs from spontaneous abortion compared with normal pregnancy at both gene and protein levels. This study provides evidence for the molecular mechanism of IL-33 in promoting proliferation and invasiveness of DSCs by up-regulation of CCL2/CCR2 via NF-κB and ERK1/2 signal pathways and thus contributes insight to the potential of IL-33 involved in successful pregnancy via inducing DSCs mitosis and invasion.

Journal ArticleDOI
TL;DR: Totipotency and the molecular determinants and pathways involved in lineage segregation in the human embryo are reviewed, as well as the role of embryonic genome activation, cell cycle features and epigenetic modifications.
Abstract: During human preimplantation development the totipotent zygote divides and undergoes a number of changes that lead to the first lineage differentiation in the blastocyst displaying trophectoderm (TE) and inner cell mass (ICM) on Day 5. The TE is a differentiated epithelium needed for implantation and the ICM forms the embryo proper and serves as a source for pluripotent embryonic stem cells (ESCs). The blastocyst implants around Day 7. The second lineage differentiation occurs in the ICM after implantation resulting in specification of primitive endoderm and epiblast. Knowledge on human preimplantation development is limited due to ethical and legal restrictions on embryo research and scarcity of materials. Studies in the human are mainly descriptive and lack functional evidence. Most information on embryo development is obtained from animal models and ESC cultures and should be extrapolated with caution. This paper reviews totipotency and the molecular determinants and pathways involved in lineage segregation in the human embryo, as well as the role of embryonic genome activation, cell cycle features and epi- genetic modifications.

Journal ArticleDOI
TL;DR: A mechanism of metal regulation required for female gamete development that may be evolutionarily conserved is demonstrated, as demonstrated by a lack of MTF-1 responsiveness to environmental zinc manipulation.
Abstract: Rapid cellular zinc influx regulates early mammalian development during the oocyte-to-egg transition through modulation of the meiotic cell cycle. Despite the physiological necessity of this zinc influx, the molecular mechanisms that govern such accumulation are unknown. Here we show that the fully grown mammalian oocyte does not employ a transcriptionally based mechanism of zinc regulation involving metal response element-binding transcription factor-1 (MTF-1), as demonstrated by a lack of MTF-1 responsiveness to environmental zinc manipulation. Instead, the mammalian oocyte controls zinc uptake through two maternally derived and cortically distributed zinc transporters, ZIP6 and ZIP10. Targeted disruption of these transporters using several approaches during meiotic maturation perturbs the intracellular zinc quota and results in a cell cycle arrest at a telophase I-like state. This arrest phenocopies established models of zinc insufficiency during the oocyte-to-egg transition, indicating the essential function of these maternally expressed transporters. Labile zinc localizes to punctate cytoplasmic structures in the human oocyte, and ZIP6 and ZIP10 are enriched in the cortex. Altogether, we demonstrate a mechanism of metal regulation required for female gamete development that may be evolutionarily conserved.

Journal ArticleDOI
TL;DR: The work that has implicated β-defensins in sperm function including the identification of the epididymis as the predominant site of expression of the peptides and the in vivo consequences of mutation and deletion is discussed.
Abstract: Recent work in humans and mouse has confirmed the involvement of the host defence β-defensin peptides in male fertility. We discuss here the work that has implicated β-defensins in sperm function including the identification of the epididymis as the predominant site of expression of the peptides and the in vivo consequences of mutation and deletion. The potential dual role of these peptides in the regulation of infection and control of sperm maturation is compelling and may combine their antimicrobial activity with the ability of these molecules to interact with cell membrane receptors and modulate ion transport.

Journal ArticleDOI
TL;DR: Using global transcriptome sequencing, a library of genes regulated during cumulus expansion and oocyte maturation processes was generated, suggesting that unique noncoding RNA transcripts may contribute to the regulation of cumulus Expansion and oocytes maturation.
Abstract: Cumulus expansion and oocyte maturation are central processes in ovulation. Knowledge gained from rodent and other mammalian models has revealed some of the molecular pathways associated with these processes. However, the equivalent pathways in humans have not been thoroughly studied and remain unidentified. Compact cumulus cells (CCs) from germinal vesicle cumulus oocyte complexes (COCs) were obtained from patients undergoing in vitro maturation (IVM) procedures. Expanded CCs from metaphase 2 COC were obtained from patients undergoing IVF/ICSI. Global transcriptome profiles of the samples were obtained using state-of-the-art RNA sequencing techniques. We identified 1746 differentially expressed (DE) genes between compact and expanded CCs. Most of these genes were involved in cellular growth and proliferation, cellular movement, cell cycle, cell-to-cell signaling and interaction, extracellular matrix and steroidogenesis. Out of the DE genes, we found 89 long noncoding RNAs, of which 12 are encoded within introns of genes known to be involved in granulosa cell processes. This suggests that unique noncoding RNA transcripts may contribute to the regulation of cumulus expansion and oocyte maturation. Using global transcriptome sequencing, we were able to generate a library of genes regulated during cumulus expansion and oocyte maturation processes. Analysis of these genes allowed us to identify important new genes and noncoding RNAs potentially involved in COC maturation and cumulus expansion. These results may increase our understanding of the process of oocyte maturation and could ultimately improve the efficacy of IVM treatment.

Journal ArticleDOI
TL;DR: Findings suggest that oocyte-derived BMP15 decreases GJIC activity between human granulosa cells by down-regulating Cx43 expression, most likely via a Smad-dependent signaling pathway.
Abstract: In the ovary, connexin-coupled gap junctions in granulosa cells play crucial roles in follicular and oocyte development as well as in corpus luteum formation. Our previous work has shown that theca cell-derived bone morphogenetic protein (BMP)4 and BMP7 decrease gap junction intercellular communication (GJIC) activity via the down-regulation of connexin43 (Cx43) expression in immortalized human granulosa cells. However, the effects of oocyte-derived growth factors on Cx43 expression remain to be elucidated. The present study was designed to investigate the effects of oocyte-derived growth differentiation factor (GDF)9 and BMP15 on the expression of Cx43 in a human granulosa cell line, SVOG. We also examined the effect relative to GJIC activity and investigated the potential mechanisms of action. In SVOG cells, treatment with BMP15 but not GDF9 significantly decreased Cx43 mRNA and protein levels and GJIC activity. These suppressive effects, along with the induction of Smad1/5/8 phosphorylation, were attenuated by co-treatment with a BMP type I receptor inhibitor, dorsomorphin. Furthermore, knockdown of the central component of the transforming growth factor-β superfamily signaling pathway, Smad4, using small interfering RNA reversed the suppressive effects of BMP15 on Cx43 expression and GJIC activity. The suppressive effects of BMP15 on Cx43 expression were further confirmed in primary human granulosa-lutein cells obtained from infertile patients undergoing an in vitro fertilization procedure. These findings suggest that oocyte-derived BMP15 decreases GJIC activity between human granulosa cells by down-regulating Cx43 expression, most likely via a Smad-dependent signaling pathway.

Journal ArticleDOI
TL;DR: It is concluded that LHR protein starts to appear on granulosa cells and theca cells of early antral follicles, and low but significant expression of LHR exists also in the cumulus cells.
Abstract: The luteinizing hormone receptor (LHR) plays a pivotal role during follicular development. Consequently, its expression pattern is of major importance for research and has clinical implications. Despite the accumulated information regarding LHR expression patterns, our understanding of its expression in the human ovary, specifically at the protein level, is incomplete. Therefore, our aim was to determine the LHR protein localization and expression pattern in the human ovary. We examined the presence of LHR by immunohistochemical staining of human ovaries and western blots of mural granulosa and cumulus cells aspirated during IVF treatments. We were not able to detect LHR protein staining in primordial or primary follicles. We observed equivocal positive staining in granulosa cells and theca cells of secondary follicles. The first appearance of a clear signal of LHR protein was observed in granulosa cells and theca cells of small antral follicles, and there was evidence of increasing LHR production as the follicles mature to the pre-ovulatory stage. After ovulation, LHR protein was ubiquitously produced in the corpus luteum. To confirm the expression pattern in granulosa cells and cumulus cells, we performed western blots and found that LHR expression was stronger in granulosa cells than in cumulus cells, with the later demonstrating low, but still significant, amounts of LHR protein. In summary, we conclude that LHR protein starts to appear on granulosa cells and theca cells of early antral follicles, and low but significant expression of LHR exists also in the cumulus cells. These results may have implications for the future design of clinical protocols and culture mediums for in vitro fertilization and especially in vitro maturation of oocytes.

Journal ArticleDOI
TL;DR: Endometrial cell autophagy induction was increased by mTOR inhibition as the menstrual cycle progresses in the normal endometrium, and that it is correlated with apoptosis, suggesting that a constant level of Autophagy is maintained by disinhibition of mTOR activity during the menstrual period and is related to decreased apoptosis.
Abstract: Mammalian target of rapamycin (mTOR) is known to be a major negative regulator of autophagy Recent studies have shown that mTOR activity is abnormally increased in endometriotic lesions In endometriosis, abnormal mTOR activity may contribute to the alteration of endometrial cell autophagy, which may affect apoptosis because endometrial cell autophagy is directly involved in the regulation of apoptosis To test this hypothesis, we investigated whether endometrial cell autophagy is altered by aberrant mTOR activity and is associated with apoptosis in ovarian endometriotic cysts Our results show that endometrial cell autophagy induction was increased by mTOR inhibition as the menstrual cycle progresses in the normal endometrium, and that it is correlated with apoptosis However, in endometriotic tissues from ovarian endometriotic cysts, autophagy, mTOR activity and apoptosis were constant throughout the menstrual cycle, suggesting that a constant level of autophagy is maintained by disinhibition of mTOR activity during the menstrual cycle in endometriotic tissues and is related to decreased apoptosis Indeed, compared with normal endometrium, increased mTOR activity during the secretory phase in endometriotic tissues inhibited autophagy and apoptosis induction In addition, to determine the direct effect of autophagy induction mediated by mTOR on endometriotic cell apoptosis, endometriotic cells were treated with rapamacin (mTOR inhibitor) with and without 3-methyladenine (3-MA, autophagy inhibitor) Although rapamycin treatment induced autophagy and led to apoptosis promotion, the pro-apoptotic effect of rapamycin was reversed by the addition of 3-MA, suggesting that mTOR inhibition promotes endometriotic cell apoptosis via autophagy induction In conclusion, our results suggest that aberrant mTOR activity in ovarian endometriotic cysts leads to alteration of endometrial cell autophagy, which is associated with abnormal apoptosis

Journal ArticleDOI
TL;DR: It is illustrated that melatonin regulates SCs metabolism, and thus may affect spermatogenesis, and melatonin supplementation may be an effective therapy for diabetic male individuals facing subfertility/infertility.
Abstract: Melatonin co-operates with insulin in the regulation of glucose homeostasis. Within the testis, glucose metabolism in the somatic Sertoli cells (SCs) is pivotal for spermatogenesis. Since the effects of melatonin on male reproductive physiology remain largely unknown, we hypothesized that melatonin may affect spermatogenesis by modulating SC metabolism, interacting with insulin. To test our hypothesis, rat SCs were maintained in culture for 24 h in the presence of insulin, melatonin or both and metabolite production/consumption was determined by proton nuclear magnetic resonance ( 1 H-NMR). Protein levels of glucose transporters (GLUT1 and GLUT3), phosphofructokinase 1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were determined by western blot. LDH activity was also assessed. SCs treated with melatonin showed an increase in glucose consumption via modulation of GLUT1 levels, but decreased LDH protein expression and activity, which resulted in lower lactate production. Moreover, SCs exposed to melatonin produced and accumulated less acetate than insulin-exposed cells. The combined treatment (insulin plus melatonin) increased acetate production by SCs, but intracellular acetate content remained lower than in insulin exposed cells. Finally, the intracellular redox state, as reflected by intracellular lactate/alanine ratio, was maintained at control levels in SCs by melatonin exposure (i.e. melatonin, alone or with insulin, increased the lactate/alanine ratio versus cells treated with insulin). Furthermore, SCs exposed to insulin plus melatonin produced more lactate and maintained the protein levels of some glycolysis-related enzymes and trans- porters at control levels. These findings illustrate that melatonin regulates SCs metabolism, and thus may affect spermatogenesis. Since lactate produced by SCs provides nutritional support and has an anti-apoptotic effect in developing germ cells, melatonin supplementation may be an effective therapy for diabetic male individuals facing subfertility/infertility.

Journal ArticleDOI
TL;DR: It is shown that mouse oocytes express the Mfn1, Mfn2, Opa1 and Drp1 proteins, both in immature and mature oocytes at similar levels, and an imbalance of mitochondrial fusion/fission leads to disorganization of the organelle compartments.
Abstract: Mitochondria are abundant in fully grown mammalian oocytes with a unique spherical morphology, but the mechanisms controlling mitochondria behavior are not well understood Here we describe for the first time the control of mitochondrial behavior in mouse oocytes by a fusion/fission mechanism Mitofusins (Mfn1 and Mfn2) and OPA1 proteins are required for outer and inner mitochondrial membrane fusion, respectively, whereas Drp1 is the key regulator of mitochondrial fission We show that mouse oocytes express the Mfn1, Mfn2, Opa1 and Drp1 proteins, both in immature and mature oocytes at similar levels Overexpression of Mfn1 or Mfn2 causes marked mitochondrial aggregation, particularly in the perinuclear region during meiotic progression Tracking of mitochondria with chromosomes or endoplasmic reticulum (ER) throughout oocyte maturation demonstrates that Mfn1 and Mfn2-promoted mitochondrial aggregation disturbs the spatiotemporal dynamic of the chromosomes and ER, respectively Our findings suggest that organelle dynamics are co-ordinately controlled during meiotic division, and an imbalance of mitochondrial fusion/fission leads to disorganization of the organelle compartments

Journal ArticleDOI
TL;DR: AREG stimulation of COC glycolysis and BMP15 preservation of GJC may facilitate efficient transfer of metabolites from cumulus cells to the oocyte thereby enhancing oocyte developmental competence, and have implications for improving in vitro oocyte maturation systems.
Abstract: This study assessed the participation of amphiregulin (AREG) and bone morphogenetic protein 15 (BMP15) during maturation of bovine cumulus-oocyte complexes (COCs) on cumulus cell function and their impact on subsequent embryo development. AREG treatment of COCs enhanced blastocyst formation and quality only when in the presence of BMP15. Expression of hyaluronan synthase 2 was enhanced by follicle-stimulating hormone (FSH) but not by AREG, which was reflected in the level of cumulus expansion. Although both FSH and AREG stimulated glycolysis, AREG-treated COCs had higher glucose consumption, lactate production and ratio of lactate production to glucose uptake. Autofluorescence levels in oocytes, indicative of NAD(P)H and FAD(++), were increased with combined AREG and BMP15 treatment of COCs. In contrast, these treatments did not alter autofluorescence levels when cumulus cells were removed from oocytes, even in the presence of other COCs, suggesting that oocyte-cumulus gap-junctional communication (GJC) is required. FSH contributed to maintaining GJC for an extended period of time. Remarkably, BMP15 was equally effective at maintaining GJC even in the presence of AREG. Hence, AREG stimulation of COC glycolysis and BMP15 preservation of GJC may facilitate efficient transfer of metabolites from cumulus cells to the oocyte thereby enhancing oocyte developmental competence. These results have implications for improving in vitro oocyte maturation systems.