scispace - formally typeset
Search or ask a question

Showing papers in "Nano-micro Letters in 2021"


Journal ArticleDOI
TL;DR: The synergistic effect of the 3D interconnectedsuperstructures and the high nitrogen-doping content endows the N-rich carbon superstructures (NCS-5) with not only increased potassium-ion storage capabilities but also superior rate and cycling performance.
Abstract: Potassium-ion batteries (PIBs) are attractive for grid-scale energy storage due to the abundant potassium resource and high energy density. The key to achieving high-performance and large-scale energy storage technology lies in seeking eco-efficient synthetic processes to the design of suitable anode materials. Herein, a spherical sponge-like carbon superstructure (NCS) assembled by 2D nanosheets is rationally and efficiently designed for K+ storage. The optimized NCS electrode exhibits an outstanding rate capability, high reversible specific capacity (250 mAh g−1 at 200 mA g−1 after 300 cycles), and promising cycling performance (205 mAh g−1 at 1000 mA g−1 after 2000 cycles). The superior performance can be attributed to the unique robust spherical structure and 3D electrical transfer network together with nitrogen-rich nanosheets. Moreover, the regulation of the nitrogen doping types and morphology of NCS-5 is also discussed in detail based on the experiments results and density functional theory calculations. This strategy for manipulating the structure and properties of 3D materials is expected to meet the grand challenges for advanced carbon materials as high-performance PIB anodes in practical applications.

399 citations


Journal ArticleDOI
TL;DR: In this paper, the cellulose carbon aerogel@reduced graphene oxide aerogels (CCA@rGO) and polydimethylsiloxane (PDMS) EMI shielding composites are prepared by backfilling with PDMS.
Abstract: In order to ensure the operational reliability and information security of sophisticated electronic components and to protect human health, efficient electromagnetic interference (EMI) shielding materials are required to attenuate electromagnetic wave energy. In this work, the cellulose solution is obtained by dissolving cotton through hydrogen bond driving self-assembly using sodium hydroxide (NaOH)/urea solution, and cellulose aerogels (CA) are prepared by gelation and freeze-drying. Then, the cellulose carbon aerogel@reduced graphene oxide aerogels (CCA@rGO) are prepared by vacuum impregnation, freeze-drying followed by thermal annealing, and finally, the CCA@rGO/polydimethylsiloxane (PDMS) EMI shielding composites are prepared by backfilling with PDMS. Owing to skin-core structure of CCA@rGO, the complete three-dimensional (3D) double-layer conductive network can be successfully constructed. When the loading of CCA@rGO is 3.05 wt%, CCA@rGO/PDMS EMI shielding composites have an excellent EMI shielding effectiveness (EMI SE) of 51 dB, which is 3.9 times higher than that of the co-blended CCA/rGO/PDMS EMI shielding composites (13 dB) with the same loading of fillers. At this time, the CCA@rGO/PDMS EMI shielding composites have excellent thermal stability (THRI of 178.3 °C) and good thermal conductivity coefficient (λ of 0.65 W m-1 K-1). Excellent comprehensive performance makes CCA@rGO/PDMS EMI shielding composites great prospect for applications in lightweight, flexible EMI shielding composites.

381 citations


Journal ArticleDOI
TL;DR: In this paper, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix were summarized.
Abstract: Conductive biomaterials based on conductive polymers, carbon nanomaterials, or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering, owing to the similar conductivity to human skin, good antioxidant and antibacterial activities, electrically controlled drug delivery, and photothermal effect. However, a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking. In this review, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized. The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies (electrotherapy, wound dressing, and wound assessment) were reviewed. The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound (infected wound and diabetic wound) and for wound monitoring is discussed in detail. The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well. Highlights: 1 The design and application of conductive biomaterials for wound healing are comprehensively reviewed, including versatile conductive agents, the various forms of conductive wound dressings, and different in vivo applications.2 Three main strategies of which conductive biomaterials realizing their applications in wound healing and skin tissue engineering are discussed.3 The challenges and perspectives in designing multifunctional conductive biomaterials and further clinical translation are proposed.

222 citations


Journal ArticleDOI
TL;DR: In this paper, the authors designed heterostructure NiCo-LDHs@ZnO nanorod and then subsequent heat treating to derive NiCo@C/ZnOs composites, where the synergy of excellent dielectric loss and magnetic loss was achieved with the reflection loss of 60.97 dB at the matching thickness of 2.3mm.
Abstract: Layered double hydroxides (LDHs) have a special structure and atom composition, which are expected to be an excellent electromagnetic wave (EMW) absorber. However, it is still a problem that obtaining excellent EMW-absorbing materials from LDHs. Herein, we designed heterostructure NiCo-LDHs@ZnO nanorod and then subsequent heat treating to derive NiCo@C/ZnO composites. Finally, with the synergy of excellent dielectric loss and magnetic loss, an outstanding absorption performance could be achieved with the reflection loss of − 60.97 dB at the matching thickness of 2.3 mm, and the widest absorption bandwidth of 6.08 GHz was realized at 2.0 mm. Moreover, this research work provides a reference for the development and utilization of LDHs materials in the field of microwave absorption materials and can also provide ideas for the design of layered structural absorbers.

205 citations


Journal ArticleDOI
TL;DR: In this article, a carbon aerogel was fabricated via fresh shaddock peel by facile freeze-drying method and calcination process, forming porous network architecture, and the effective absorption bandwidth covers 5.80 GHz at a relatively thin thickness of only 1.7mm.
Abstract: . Eco-friendly electromagnetic wave absorbing materials with excellent thermal infrared stealth property, heat-insulating ability and compression resistance are highly attractive in practical applications. Meeting the aforesaid requirements simultaneously is a formidable challenge. Herein, ultra-light carbon aerogels were fabricated via fresh shaddock peel by facile freeze-drying method and calcination process, forming porous network architecture. With the heating platform temperature of 70 °C, the upper surface temperatures of the as-prepared carbon aerogel present a slow upward trend. The color of the sample surface in thermal infrared images is similar to that of the surroundings. With the maximum compressive stress of 2.435 kPa, the carbon aerogels can provide favorable endurance. The shaddock peel-based carbon aerogels possess the minimum reflection loss value (RLmin) of − 29.50 dB in X band. Meanwhile, the effective absorption bandwidth covers 5.80 GHz at a relatively thin thickness of only 1.7 mm. With the detection theta of 0°, the maximum radar cross-sectional (RCS) reduction values of 16.28 dB m2 can be achieved. Theoretical simulations of RCS have aroused extensive interest owing to their ingenious design and time-saving feature. This work paves the way for preparing multi-functional microwave absorbers derived from biomass raw materials under the guidance of RCS simulations.

201 citations


Journal ArticleDOI
TL;DR: In this paper, the key concept, loss mechanism and test method of EMI shielding are discussed, and the research progress of polymer matrix electromagnetic interference (EMI) shielding composites with different structures is illustrated.
Abstract: With the widespread application of electronic communication technology, the resulting electromagnetic radiation pollution has been significantly increased. Metal matrix electromagnetic interference (EMI) shielding materials have disadvantages such as high density, easy corrosion, difficult processing and high price, etc. Polymer matrix EMI shielding composites possess light weight, corrosion resistance and easy processing. However, the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance. This review firstly discusses the key concept, loss mechanism and test method of EMI shielding. Then the current development status of EMI shielding materials is summarized, and the research progress of polymer matrix EMI shielding composites with different structures is illustrated, especially for their preparation methods and evaluation. Finally, the corresponding key scientific and technical problems are proposed, and their development trend is also prospected.

195 citations


Journal ArticleDOI
TL;DR: Based on the high EM absorption, a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure, and these strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.
Abstract: It is extremely unattainable for a material to simultaneously obtain efficient electromagnetic (EM) absorption and green shielding performance, which has not been reported due to the competition between conduction loss and reflection. Herein, by tailoring the internal structure through nano-micro engineering, a NiCo2O4 nanofiber with integrated EM absorbing and green shielding as well as strain sensing functions is obtained. With the improvement of charge transport capability of the nanofiber, the performance can be converted from EM absorption to shielding, or even coexist. Particularly, as the conductivity rising, the reflection loss declines from − 52.72 to − 10.5 dB, while the EM interference shielding effectiveness increases to 13.4 dB, suggesting the coexistence of the two EM functions. Furthermore, based on the high EM absorption, a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure. These strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.

187 citations


Journal ArticleDOI
TL;DR: In this paper, a review summarizes the main progress of perovskite solar cells in 2020 and 2021 from the aspects of efficiency, stability and tandem devices, and a brief discussion on the development of PSC modules and its challenges toward practical application is provided.
Abstract: Perovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided.

186 citations


Journal ArticleDOI
TL;DR: In this article, a self-powered flexible humidity sensing device based on polyvinyl alcohol/Ti3C2Tx (PVA/MXene) nanofibers film and monolayer molybdenum diselenide (MoSe2) piezoelectric nanogenerator (PENG) was reported for the first time.
Abstract: Two-dimensional material has been widely investigated for potential applications in sensor and flexible electronics. In this work, a self-powered flexible humidity sensing device based on poly(vinyl alcohol)/Ti3C2Tx (PVA/MXene) nanofibers film and monolayer molybdenum diselenide (MoSe2) piezoelectric nanogenerator (PENG) was reported for the first time. The monolayer MoSe2-based PENG was fabricated by atmospheric pressure chemical vapor deposition techniques, which can generate a peak output of 35 mV and a power density of 42 mW m−2. The flexible PENG integrated on polyethylene terephthalate (PET) substrate can harvest energy generated by different parts of human body and exhibit great application prospects in wearable devices. The electrospinned PVA/MXene nanofiber-based humidity sensor with flexible PET substrate under the driven of monolayer MoSe2 PENG, shows high response of ∼40, fast response/recovery time of 0.9/6.3 s, low hysteresis of 1.8% and excellent repeatability. The self-powered flexible humidity sensor yields the capability of detecting human skin moisture and ambient humidity. This work provides a pathway to explore the high-performance humidity sensor integrated with PENG for the self-powered flexible electronic devices.

174 citations


Journal ArticleDOI
TL;DR: In this paper, a review of metal-organic frameworks (MOFs) derived porous carbon (PC) based microwave absorption materials (MAMs) is presented, where the authors summarize the theories of MA, the progress of different MOF-derived PC-based MAMs, tunable chemical structures incorporated with dielectric loss or magnetic loss materials.
Abstract: The development of microwave absorption materials (MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health. And MAMs are also used in radar stealth for protecting the weapons from being detected. Many nanomaterials were studied as MAMs, but not all of them have the satisfactory performance. Recently, metal–organic frameworks (MOFs) have attracted tremendous attention owing to their tunable chemical structures, diverse properties, large specific surface area and uniform pore distribution. MOF can transform to porous carbon (PC) which is decorated with metal species at appropriate pyrolysis temperature. However, the loss mechanism of pure MOF-derived PC is often relatively simple. In order to further improve the MA performance, the MOFs coupled with other loss materials are a widely studied method. In this review, we summarize the theories of MA, the progress of different MOF-derived PC‑based MAMs, tunable chemical structures incorporated with dielectric loss or magnetic loss materials. The different MA performance and mechanisms are discussed in detail. Finally, the shortcomings, challenges and perspectives of MOF-derived PC‑based MAMs are also presented. We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.

168 citations


Journal ArticleDOI
TL;DR: In this article, a conductive polymer composite of electrospun thermoplastic polyurethane (TPU) fibrous film matrix-embedded carbon black (CB) particles with adjustable scaffold network was fabricated for high-sensitive strain sensor.
Abstract: In recently years, high-performance wearable strain sensors have attracted great attention in academic and industrial. Herein, a conductive polymer composite of electrospun thermoplastic polyurethane (TPU) fibrous film matrix-embedded carbon black (CB) particles with adjustable scaffold network was fabricated for high-sensitive strain sensor. This work indicated the influence of stereoscopic scaffold network structure built under various rotating speeds of collection device in electrospinning process on the electrical response of TPU/CB strain sensor. This structure makes the sensor exhibit combined characters of high sensitivity under stretching strain (gauge factor of 8962.7 at 155% strain), fast response time (60 ms), outstanding stability and durability (> 10,000 cycles) and a widely workable stretching range (0–160%). This high-performance, wearable, flexible strain sensor has a broad vision of application such as intelligent terminals, electrical skins, voice measurement and human motion monitoring. Moreover, a theoretical approach was used to analyze mechanical property and a model based on tunneling theory was modified to describe the relative change of resistance upon the applied strain. Meanwhile, two equations based from this model were first proposed and offered an effective but simple approach to analyze the change of number of conductive paths and distance of adjacent conductive particles.

Journal ArticleDOI
Zhen Xiang1, Yuyang Shi1, Xiaojie Zhu1, Lei Cai1, Wei Lu1 
TL;DR: In this article, an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti3C2Tx/carbon nanotubes/Co nanoparticles was proposed, which achieved a strong reflection loss of -85.8 dB and an ultrathin thickness of 1.4 mm.
Abstract: High-performance electromagnetic wave absorption and electromagnetic interference (EMI) shielding materials with multifunctional characters have attracted extensive scientific and technological interest, but they remain a huge challenge. Here, we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti3C2Tx/carbon nanotubes/Co nanoparticles (Ti3C2Tx/CNTs/Co) nanocomposites with an excellent electromagnetic wave absorption, EMI shielding efficiency, flexibility, hydrophobicity, and photothermal conversion performance. As expected, a strong reflection loss of -85.8 dB and an ultrathin thickness of 1.4 mm were achieved. Meanwhile, the high EMI shielding efficiency reached 110.1 dB. The excellent electromagnetic wave absorption and shielding performances were originated from the charge carriers, electric/magnetic dipole polarization, interfacial polarization, natural resonance, and multiple internal reflections. Moreover, a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti3C2Tx/CNTs/Co hydrophobic, which can prevent the degradation/oxidation of the MXene in high humidity condition. Interestingly, the Ti3C2Tx/CNTs/Co film exhibited a remarkable photothermal conversion performance with high thermal cycle stability and tenability. Thus, the multifunctional Ti3C2Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding, light-driven heating performance, and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system.

Journal ArticleDOI
TL;DR: Developing smaller size platforms is one approach toward applying phone apps, as well as utilizing LFA, biosensors, and nanobiosensors detection techniques, for SARS-CoV-2 detection.
Abstract: A novel coronavirus of zoonotic origin (SARS-CoV-2) has recently been recognized in patients with acute respiratory disease. COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses. The drastic increase in the number of coronavirus and its genome sequence have given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses. Clinical tests like PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients. However, these techniques are expensive and not readily available for point-of-care (POC) applications. Currently, lack of any rapid, available, and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem. To solve the negative features of clinical investigation, we provide a brief introduction of the general features of coronaviruses and describe various amplification assays, sensing, biosensing, immunosensing, and aptasensing for the determination of various groups of coronaviruses applied as a template for the detection of SARS-CoV-2. All sensing and biosensing techniques developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus, i.e., SARS-CoV-2. Also, the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system to detect the virus at the early stage of infection to tranquilize the speed and vastity of spreading. Among other approaches investigated among molecular approaches and PCR or recognition of viral diseases, LAMP-based methods and LFAs are of great importance for their numerous benefits, which can be helpful to design a universal platform for detection of future emerging pathogenic viruses.

Journal ArticleDOI
TL;DR: In this paper, a new type of the inorganic highly concentrated colloidal electrolytes (HCCE) was proposed for ZIBs promoting simultaneous robust protection of both cathode/anode leading to an effective suppression of element dissolution, dendrite, and irreversible products growth.
Abstract: Zinc-ion batteries (ZIBs) is a promising electrical energy storage candidate due to its eco-friendliness, low cost, and intrinsic safety, but on the cathode the element dissolution and the formation of irreversible products, and on the anode the growth of dendrite as well as irreversible products hinder its practical application. Herein, we propose a new type of the inorganic highly concentrated colloidal electrolytes (HCCE) for ZIBs promoting simultaneous robust protection of both cathode/anode leading to an effective suppression of element dissolution, dendrite, and irreversible products growth. The new HCCE has high Zn2+ ion transference number (0.64) endowed by the limitation of SO42−, the competitive ion conductivity (1.1 × 10–2 S cm−1) and Zn2+ ion diffusion enabled by the uniform pore distribution (3.6 nm) and the limited free water. The Zn/HCCE/α-MnO2 cells exhibit high durability under both high and low current densities, which is almost 100% capacity retention at 200 mA g−1 after 400 cycles (290 mAh g−1) and 89% capacity retention under 500 mA g−1 after 1000 cycles (212 mAh g−1). Considering material sustainability and batteries’ high performances, the colloidal electrolyte may provide a feasible substitute beyond the liquid and all-solid-state electrolyte of ZIBs.

Journal ArticleDOI
TL;DR: This review summarizes progresses and highlights strategies of MOF derivatives for efficient electromagnetic wave absorption, and summarizes the relevant theories and evaluation methods, and categorized the state-of-the-art research progresses in EMW absorption field.
Abstract: To tackle the aggravating electromagnetic wave (EMW) pollution issues, high-efficiency EMW absorption materials are urgently explored. Metal–organic framework (MOF) derivatives have been intensively investigated for EMW absorption due to the distinctive components and structures, which is expected to satisfy diverse application requirements. The extensive developments on MOF derivatives demonstrate its significantly important role in this research area. Particularly, MOF derivatives deliver huge performance superiorities in light weight, broad bandwidth, and robust loss capacity, which are attributed to the outstanding impedance matching, multiple attenuation mechanisms, and destructive interference effect. Herein, we summarized the relevant theories and evaluation methods, and categorized the state-of-the-art research progresses on MOF derivatives in EMW absorption field. In spite of lots of challenges to face, MOF derivatives have illuminated infinite potentials for further development as EMW absorption materials. Highlights: 1 In terms of components and structures, this review summarizes progresses and highlights strategies of MOF derivatives for efficient electromagnetic wave absorption.2 We also systematically delineate relevant theories and points out the prospects and current challenges.

Journal ArticleDOI
Qianwen Liu1, Amin Zhang1, Ruhao Wang1, Qian Zhang1, Daxiang Cui1 
TL;DR: In this paper, the authors dig into the characteristics and intrinsic properties of metal and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy.
Abstract: Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.

Journal ArticleDOI
TL;DR: The capability of gold nanomaterials to mimic enzyme activities offers new approaches for diagnosis and treatment in the field of biomedicine, which are discussed in this review.
Abstract: In recent years, gold nanoparticles have demonstrated excellent enzyme-mimicking activities which resemble those of peroxidase, oxidase, catalase, superoxide dismutase or reductase. This, merged with their ease of synthesis, tunability, biocompatibility and low cost, makes them excellent candidates when compared with biological enzymes for applications in biomedicine or biochemical analyses. Herein, over 200 research papers have been systematically reviewed to present the recent progress on the fundamentals of gold nanozymes and their potential applications. The review reveals that the morphology and surface chemistry of the nanoparticles play an important role in their catalytic properties, as well as external parameters such as pH or temperature. Yet, real applications often require specific biorecognition elements to be immobilized onto the nanozymes, leading to unexpected positive or negative effects on their activity. Thus, rational design of efficient nanozymes remains a challenge of paramount importance. Different implementation paths have already been explored, including the application of peroxidase-like nanozymes for the development of clinical diagnostics or the regulation of oxidative stress within cells via their catalase and superoxide dismutase activities. The review also indicates that it is essential to understand how external parameters may boost or inhibit each of these activities, as more than one of them could coexist. Likewise, further toxicity studies are required to ensure the applicability of gold nanozymes in vivo. Current challenges and future prospects of gold nanozymes are discussed in this review, whose significance can be anticipated in a diverse range of fields beyond biomedicine, such as food safety, environmental analyses or the chemical industry.

Journal ArticleDOI
TL;DR: Lamellar-structured graphene aerogels with superior through-plane thermal conduction capacity are fabricated for the first time, and its superior Through-plane Thermal Conductivity enhancement results from its vertically aligned and closely stacked high-quality graphene lamellae.
Abstract: Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers, the resulting nanocomposites usually exhibit low through-plane thermal conductivities, limiting their application as thermal interface materials. Herein, lamellar-structured polyamic acid salt/graphene oxide (PAAS/GO) hybrid aerogels are constructed by bidirectional freezing of PAAS/GO suspension followed by lyophilization. Subsequently, PAAS monomers are polymerized to polyimide (PI), while GO is converted to thermally reduced graphene oxide (RGO) during thermal annealing at 300 °C. Final graphitization at 2800 °C converts PI to graphitized carbon with the inductive effect of RGO, and simultaneously, RGO is thermally reduced and healed to high-quality graphene. Consequently, lamellar-structured graphene aerogels with superior through-plane thermal conduction capacity are fabricated for the first time, and its superior through-plane thermal conduction capacity results from its vertically aligned and closely stacked high-quality graphene lamellae. After vacuum-assisted impregnation with epoxy, the resultant epoxy composite with 2.30 vol% of graphene exhibits an outstanding through-plane thermal conductivity of as high as 20.0 W m−1 K−1, 100 times of that of epoxy, with a record-high specific thermal conductivity enhancement of 4310%. Furthermore, the lamellar-structured graphene aerogel endows epoxy with a high fracture toughness, ~ 1.71 times of that of epoxy.

Journal ArticleDOI
TL;DR: In this article, a porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415 (TiZr-MOFs) are qualified with a minimum reflection loss of 67.8 dB (2.16mm, 13.0 GHz), and a maximum effective absorption bandwidth of 5.9 GHz (2,70mm).
Abstract: Modern communication technologies put forward higher requirements for electromagnetic wave (EMW) absorption materials. Metal–organic framework (MOF) derivatives have been widely concerned with its diverse advantages. To break the mindset of magnetic-derivative design, and make up the shortage of monometallic non-magnetic derivatives, we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption. The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415 (TiZr-MOFs) are qualified with a minimum reflection loss of − 67.8 dB (2.16 mm, 13.0 GHz), and a maximum effective absorption bandwidth of 5.9 GHz (2.70 mm). Through in-depth discussions, the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed. Therefore, this work confirms the huge potentials of non-magnetic bimetallic MOFs derivatives in EMW absorption applications.

Journal ArticleDOI
TL;DR: In this article, all developments and applications of the Ti3C2Tx MXene (here, it is noteworthy that there are still no reports on other MXenes' application in photovoltaics by far) as additive, electrode and hole/electron transport layer in solar cells are detailedly summarized, and meanwhile, the problems existing in the related studies are also discussed.
Abstract: Application of two-dimensional MXene materials in photovoltaics has attracted increasing attention since the first report in 2018 due to their metallic electrical conductivity, high carrier mobility, excellent transparency, tunable work function and superior mechanical property. In this review, all developments and applications of the Ti3C2Tx MXene (here, it is noteworthy that there are still no reports on other MXenes’ application in photovoltaics by far) as additive, electrode and hole/electron transport layer in solar cells are detailedly summarized, and meanwhile, the problems existing in the related studies are also discussed. In view of these problems, some suggestions are given for pushing exploration of the MXenes’ application in solar cells. It is believed that this review can provide a comprehensive and deep understanding into the research status and, moreover, helps widen a new situation for the study of MXenes in photovoltaics.

Journal ArticleDOI
TL;DR: In this article, a lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites (GHPCM) was successfully fabricated through an in situ strategy.
Abstract: Inspired by the nature, lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites (GHPCM) were successfully fabricated through an in situ strategy. The biological microstructure of lotus leaf was well preserved after treatment. Different pores with gradient pore sizes ranging from 300 to 5 μm were hierarchically distributed in the composites. In addition, the surface states of lotus leaf resulted in the Janus-like morphologies of MoS2. The GHPCM exhibit excellent electromagnetic wave absorption performance, with the minimum reflection loss of − 50.1 dB at a thickness of 2.4 mm and the maximum effective bandwidth of 6.0 GHz at a thickness of 2.2 mm. The outstanding performance could be attributed to the synergy of conductive loss, polarization loss, and impedance matching. In particularly, we provided a brand-new dielectric sum-quotient model to analyze the electromagnetic performance of the non-magnetic material system. It suggests that the specific sum and quotient of permittivity are the key to keep reflection loss below − 10 dB within a certain frequency range. Furthermore, based on the concept of material genetic engineering, the dielectric constant could be taken into account to seek for suitable materials with designable electromagnetic absorption performance.

Journal ArticleDOI
TL;DR: In this paper, a class of carbon heterostructures via hierarchical assembly of graphitized lignocellulose derived from bamboo were designed for high-performance electromagnetic (EM) absorption.
Abstract: Although advances in wireless technologies such as miniature and wearable electronics have improved the quality of our lives, the ubiquitous use of electronics comes at the expense of increased exposure to electromagnetic (EM) radiation. Up to date, extensive efforts have been made to develop high-performance EM absorbers based on synthetic materials. However, the design of an EM absorber with both exceptional EM dissipation ability and good environmental adaptability remains a substantial challenge. Here, we report the design of a class of carbon heterostructures via hierarchical assembly of graphitized lignocellulose derived from bamboo. Specifically, the assemblies of nanofibers and nanosheets behave as a nanometer-sized antenna, which results in an enhancement of the conductive loss. In addition, we show that the composition of cellulose and lignin in the precursor significantly influences the shape of the assembly and the formation of covalent bonds, which affect the dielectric response-ability and the surface hydrophobicity (the apparent contact angle of water can reach 135°). Finally, we demonstrate that the obtained carbon heterostructure maintains its wideband EM absorption with an effective absorption frequency ranging from 12.5 to 16.7 GHz under conditions that simulate the real-world environment, including exposure to rainwater with slightly acidic/alkaline pH values. Overall, the advances reported in this work provide new design principles for the synthesis of high-performance EM absorbers that can find practical applications in real-world environments.

Journal ArticleDOI
TL;DR: Three-dimension hierarchical core–shell Mo 2 N@CoFe@C/CNT composites were successfully constructed via a fast MOF-based ligand exchange strategy and exhibited strong magnetic loss capability, confirmed by off-axis electron holography.
Abstract: Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption (MA) field. Herein, a three-dimension hierarchical “nanotubes on microrods,” core–shell magnetic metal–carbon composite is rationally constructed for the first time via a fast metal–organic frameworks-based ligand exchange strategy followed by a carbonization treatment with melamine. Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod (Mo2N@CoFe@C/CNT), constructing a special multi-dimension hierarchical MA material. Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite, which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell. Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of − 53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz. The Mo2N@CoFe@C/CNT composites hold the following advantages: (1) hierarchical core–shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization, (2) unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss, (3) highly dispersed magnetic CoFe nanoparticles within “tubes on rods” matrix build multi-scale magnetic coupling network and reinforce magnetic response capability, confirmed by the off-axis electron holography.

Journal ArticleDOI
TL;DR: In this article, the authors propose three possible directions for breaking through the bottlenecks of thermally conductive polymer composites: (1) preparing and synthesizing intrinsically thermally-conductive polymers, (2) reducing the interfacial thermal resistance, and (3) establishing suitable thermal conduction models to guide experimental optimization.
Abstract: Rapid development of energy, electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites. However, the thermal conductivity coefficient (λ) values of prepared thermally conductive polymer composites are still difficult to achieve expectations, which has become the bottleneck in the fields of thermally conductive polymer composites. Aimed at that, based on the accumulation of the previous research works by related researchers and our research group, this paper proposes three possible directions for breaking through the bottlenecks: (1) preparing and synthesizing intrinsically thermally conductive polymers, (2) reducing the interfacial thermal resistance in thermally conductive polymer composites, and (3) establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization. Also, the future development trends of the three above-mentioned directions are foreseen, hoping to provide certain basis and guidance for the preparation, researches and development of thermally conductive polymers and their composites.

Journal ArticleDOI
TL;DR: In this paper, the substitution of equivalent/heterovalent metals for Pb based on first-principles calculation, summarizes the theoretical basis of lead-free perovskites, and screens out some promising leadfree candidates with suitable bandgap, optical, and electrical properties.
Abstract: The toxicity issue of lead hinders large-scale commercial production and photovoltaic field application of lead halide perovskites. Some novel non- or low-toxic perovskite materials have been explored for development of environmentally friendly lead-free perovskite solar cells (PSCs). This review studies the substitution of equivalent/heterovalent metals for Pb based on first-principles calculation, summarizes the theoretical basis of lead-free perovskites, and screens out some promising lead-free candidates with suitable bandgap, optical, and electrical properties. Then, it reports notable achievements for the experimental studies of lead-free perovskites to date, including the crystal structure and material bandgap for all of lead-free materials and photovoltaic performance and stability for corresponding devices. The review finally discusses challenges facing the successful development and commercialization of lead-free PSCs and predicts the prospect of lead-free PSCs in the future.

Journal ArticleDOI
TL;DR: This review introduces the recent anode materials of potassium ion batteries classified into 0D, 1D, 2D, and 3D, mainly including carbon materials, metal-based chalcogenides and metal- based oxides, and alloying materials.
Abstract: Potassium ion batteries (PIBs) with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems (EESs). However, there are still some obstacles like large size of K+ to commercial PIBs applications. Therefore, rational structural design based on appropriate materials is essential to obtain practical PIBs anode with K+ accommodated and fast diffused. Nanostructural design has been considered as one of the effective strategies to solve these issues owing to unique physicochemical properties. Accordingly, quite a few recent anode materials with different dimensions in PIBs have been reported, mainly involving in carbon materials, metal-based chalcogenides (MCs), metal-based oxides (MOs), and alloying materials. Among these anodes, nanostructural carbon materials with shorter ionic transfer path are beneficial for decreasing the resistances of transportation. Besides, MCs, MOs, and alloying materials with nanostructures can effectively alleviate their stress changes. Herein, these materials are classified into 0D, 1D, 2D, and 3D. Particularly, the relationship between different dimensional structures and the corresponding electrochemical performances has been outlined. Meanwhile, some strategies are proposed to deal with the current disadvantages. Hope that the readers are enlightened from this review to carry out further experiments better.

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of recent advances in developing non-metal carbon-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries.
Abstract: Exploring low-cost and earth-abundant oxygen reduction reaction (ORR) electrocatalyst is essential for fuel cells and metal–air batteries. Among them, non-metal nanocarbon with multiple advantages of low cost, abundance, high conductivity, good durability, and competitive activity has attracted intense interest in recent years. The enhanced ORR activities of the nanocarbons are normally thought to originate from heteroatom (e.g., N, B, P, or S) doping or various induced defects. However, in practice, carbon-based materials usually contain both dopants and defects. In this regard, in terms of the co-engineering of heteroatom doping and defect inducing, we present an overview of recent advances in developing non-metal carbon-based electrocatalysts for the ORR. The characteristics, ORR performance, and the related mechanism of these functionalized nanocarbons by heteroatom doping, defect inducing, and in particular their synergistic promotion effect are emphatically analyzed and discussed. Finally, the current issues and perspectives in developing carbon-based electrocatalysts from both of heteroatom doping and defect engineering are proposed. This review will be beneficial for the rational design and manufacturing of highly efficient carbon-based materials for electrocatalysis. Highlights: 1 Recent advances of non-metal nanocarbon materials for electrocatalytic oxygen reduction reaction (ORR) are comprehensively summarized in terms of co-engineering of heteroatom doping and defect inducing.2 The characteristics, ORR performance, and the related mechanism of non-metal nanocarbon are emphatically analyzed and discussed.3 The current issues and perspectives in developing carbon-based electrocatalysts from both of heteroatom doping and defect engineering are pointed out and proposed.

Journal ArticleDOI
TL;DR: In this article, a hollow NiCo compound@MXene networks were prepared by etching the ZIF 67 template and subsequently anchoring the Ti3C2Tx nanosheets through electrostatic self-assembly.
Abstract: The 3D hollow hierarchical architectures tend to be designed for inhibiting stack of MXene flakes to obtain satisfactory lightweight, high-efficient and broadband absorbers. Herein, the hollow NiCo compound@MXene networks were prepared by etching the ZIF 67 template and subsequently anchoring the Ti3C2Tx nanosheets through electrostatic self-assembly. The electromagnetic parameters and microwave absorption property can be distinctly or slightly regulated by adjusting the filler loading and decoration of Ti3C2Tx nanoflakes. Based on the synergistic effects of multi-components and special well-constructed structure, NiCo layered double hydroxides@Ti3C2Tx (LDHT-9) absorber remarkably achieves unexpected effective absorption bandwidth (EAB) of 6.72 GHz with a thickness of 2.10 mm, covering the entire Ku-band. After calcination, transition metal oxide@Ti3C2Tx (TMOT-21) absorber near the percolation threshold possesses minimum reflection loss (RLmin) value of − 67.22 dB at 1.70 mm within a filler loading of only 5 wt%. This work enlightens a simple strategy for constructing MXene-based composites to achieve high-efficient microwave absorbents with lightweight and tunable EAB. Highlights: 1 Ultralight 3D NiCo compound@MXene nanocomposites that inherited hollow polyhedral skeleton and excellent conductive network were fabricated.2 Excellent electromagnetic absorption performance was achieved with optimal RLmin value of − 67.22 dB and ultra-wide EAB of 6.72 GHz under the low filler loading.3 Electromagnetic parameters and microwave absorption property can be distinctly or slightly regulated by adjusting the filler loading and decoration of Ti3C2Tx nanoflakes.

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the pain signal and its management during application of transdermal microneedle (MN) and typical hypodermic needles.
Abstract: Transdermal microneedle (MN) patches are a promising tool used to transport a wide variety of active compounds into the skin. To serve as a substitute for common hypodermic needles, MNs must pierce the human stratum corneum (~ 10 to 20 µm), without rupturing or bending during penetration. This ensures that the cargo is released at the predetermined place and time. Therefore, the ability of MN patches to sufficiently pierce the skin is a crucial requirement. In the current review, the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared. This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice. Factors that affect insertion (e.g., geometry, material composition and cross-linking of MNs), along with recent advancements in developed strategies (e.g., insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography) to improve the skin penetration are highlighted to provide a backdrop for future research.

Journal ArticleDOI
Guangfu Qian1, Jinli Chen1, Tianqi Yu1, Lin Luo1, Shibin Yin1 
TL;DR: NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotential for hydrogen and oxygen evolution reaction (HER: 39/266mV; OER: 260/390mV) at 6.0 M KOH solution at 60°C for WE, it only requires 1.90 V to reach 1000 µm−cm−2 and shows excellent stability for 43h, exhibiting the potential for actual application as discussed by the authors.
Abstract: Developing highly effective and stable non-noble metal-based bifunctional catalyst working at high current density is an urgent issue for water electrolysis (WE). Herein, we prepare the N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet grown on 3D nickel foam (NiCo@C-NiCoMoO/NF) for water splitting. NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotentials for hydrogen and oxygen evolution reaction (HER: 39/266 mV; OER: 260/390 mV) at ± 10 and ± 1000 mA cm−2. More importantly, in 6.0 M KOH solution at 60 °C for WE, it only requires 1.90 V to reach 1000 mA cm−2 and shows excellent stability for 43 h, exhibiting the potential for actual application. The good performance can be assigned to N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet, which not only increase the intrinsic activity and expose abundant catalytic activity sites, but also enhance its chemical and mechanical stability. This work thus could provide a promising material for industrial hydrogen production.