scispace - formally typeset
Search or ask a question

Showing papers in "Plant Cell and Environment in 2015"


Journal ArticleDOI
TL;DR: ABF1 is a functional homolog of AREB1, AREB2, and ABF3 in ABA-dependent gene expression from a comparative analysis between the areb 1 areb2 abf3 abf1 and areb1 areb 2 abF3 mutants.
Abstract: Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth.

428 citations


Journal ArticleDOI
TL;DR: There is evidence of within-species genetic variation in thermal tolerance, which could be important to exploit in production forestry systems and critically important for understanding how tree species will be affected by climate change.
Abstract: The number and intensity of heat waves has increased, and this trend is likely to continue throughout the 21st century. Often, heat waves are accompanied by drought conditions. It is projected that the global land area experiencing heat waves will double by 2020, and quadruple by 2040. Extreme heat events can impact a wide variety of tree functions. At the leaf level, photosynthesis is reduced, photooxidative stress increases, leaves abscise and the growth rate of remaining leaves decreases. In some species, stomatal conductance increases at high temperatures, which may be a mechanism for leaf cooling. At the whole plant level, heat stress can decrease growth and shift biomass allocation. When drought stress accompanies heat waves, the negative effects of heat stress are exacerbated and can lead to tree mortality. However, some species exhibit remarkable tolerance to thermal stress. Responses include changes that minimize stress on photosynthesis and reductions in dark respiration. Although there have been few studies to date, there is evidence of within-species genetic variation in thermal tolerance, which could be important to exploit in production forestry systems. Understanding the mechanisms of differing tree responses to extreme temperature events may be critically important for understanding how tree species will be affected by climate change.

392 citations


Journal ArticleDOI
TL;DR: Strategies to optimize Rubisco and its regulation are addressed in relation to their potential to improve crop resource use efficiency and climate resilience of photosynthesis.
Abstract: Rubisco catalyses the carboxylation of ribulose-1,5-bisphosphate (RuBP), enabling net CO2 assimilation in photosynthesis. The properties and regulation of Rubisco are not optimal for biomass production in current and projected future environments. Rubisco is relatively inefficient, and large amounts of the enzyme are needed to support photosynthesis, requiring large investments in nitrogen. The competing oxygenation of RuBP by Rubisco decreases photosynthetic efficiency. Additionally, Rubisco is inhibited by some sugar phosphates and depends upon interaction with Rubisco activase (Rca) to be reactivated. Rca activity is modulated by the chloroplast redox status and ADP/ATP ratios, thereby mediating Rubisco activation and photosynthetic induction in response to irradiance. The extreme thermal sensitivity of Rca compromises net CO2 assimilation at moderately high temperatures. Given its central role in carbon assimilation, the improvement of Rubisco function and regulation is tightly linked with irradiance, nitrogen and water use efficiencies. Although past attempts have had limited success, novel technologies and an expanding knowledge base make the challenge of improving Rubisco activity in crops an achievable goal. Strategies to optimize Rubisco and its regulation are addressed in relation to their potential to improve crop resource use efficiency and climate resilience of photosynthesis.

258 citations


Journal ArticleDOI
TL;DR: How day length may limit the ability of tree species to respond to climate warming in situ is discussed, focusing on the implications of photoperiodic sensing for extending the growing season and affecting plant phenology and growth.
Abstract: Increasing temperatures should facilitate the poleward movement of species distributions through a variety of processes, including increasing the growing season length. However, in temperate and boreal latitudes, temperature is not the only cue used by trees to determine seasonality, as changes in photoperiod provide a more consistent, reliable annual signal of seasonality than temperature. Here, we discuss how day length may limit the ability of tree species to respond to climate warming in situ, focusing on the implications of photoperiodic sensing for extending the growing season and affecting plant phenology and growth, as well as the potential role of photoperiod in controlling carbon uptake and water fluxes in forests. We also review whether there are patterns across plant functional types (based on successional strategy, xylem anatomy and leaf morphology) in their sensitivity to photoperiod that we can use to predict which species or groups might be more successful in migrating as the climate warms, or may be more successfully used for forestry and agriculture through assisted migration schemes.

256 citations


Journal ArticleDOI
TL;DR: To account for the different temperature responses between species, it is suggested that there must be variation in both the activation energy for membrane permeability and the effective pathlength for liquid phase diffusion.
Abstract: This research was supported by an Australian ResearchCouncil Discovery Grant (DP110104269).

246 citations


Journal ArticleDOI
TL;DR: It remains unproven whether UV-induced morphological changes have a protective function involving shading and decreased leaf penetration of UV-B, counterbalancing trade-offs such as decreased photosynthetic light capture and plant-competitive abilities.
Abstract: There is a need to reappraise the effects of UV-B radiation on plant morphology in light of improved mechanistic understanding of UV-B effects, particularly elucidation of the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor. We review responses at cell and organismal levels, and explore their underlying regulatory mechanisms, function in UV protection and consequences for plant fitness. UV-induced morphological changes include thicker leaves, shorter petioles, shorter stems, increased axillary branching and altered root:shoot ratios. At the cellular level, UV-B morphogenesis comprises changes in cell division, elongation and/or differentiation. However, notwithstanding substantial new knowledge of molecular, cellular and organismal UV-B responses, there remains a clear gap in our understanding of the interactions between these organizational levels, and how they control plant architecture. Furthermore, despite a broad consensus that UV-B induces relatively compact architecture, we note substantial diversity in reported phenotypes. This may relate to UV-induced morphological changes being underpinned by different mechanisms at high and low UV-B doses. It remains unproven whether UV-induced morphological changes have a protective function involving shading and decreased leaf penetration of UV-B, counterbalancing trade-offs such as decreased photosynthetic light capture and plant-competitive abilities. Future research will need to disentangle seemingly contradictory interactions occurring at the threshold UV dose where regulation and stress-induced morphogenesis overlap.

223 citations


Journal ArticleDOI
TL;DR: Root phenes that reduce the metabolic cost of soil exploration are promising, underexploited avenues to the climate-resilient, resource-efficient crops that are urgently needed in global agriculture.
Abstract: Crop genotypes with reduced metabolic costs of soil exploration would have improved water and nutrient acquisition. Three strategies to achieve this goal are (1) production of the optimum number of axial roots; (2) greater biomass allocation to root classes that are less metabolically demanding; and (3) reduction of the respiratory requirement of root tissue. An example of strategy 1 is the case of reduced crown root number in maize, which is associated with greater rooting depth, N capture and yield in low N soil. An example of strategy 2 is the case of increased hypocotyl-borne rooting in bean, which decreases root cost and increases P capture from low P soil. Examples of strategy 3 are the cases of increased formation of root cortical aerenchyma, decreased cortical cell file number and increased cortical cell size in maize, which decrease specific root respiration, increase rooting depth and increase water capture and yield under water stress. Root cortical aerenchyma also increases N capture and yield under N stress. Root phenes that reduce the metabolic cost of soil exploration are promising, underexploited avenues to the climate-resilient, resource-efficient crops that are urgently needed in global agriculture.

216 citations


Journal ArticleDOI
TL;DR: Recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions are reviewed, and molecular modifications to equip plants for greater production in water-limited environments are suggested.
Abstract: The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions.

187 citations


Journal ArticleDOI
TL;DR: This review addresses the importance of vapour pressure deficit under fully flooded paddies and increased vulnerability of rice production to heat stress or intermittent occurrence of combined heat and drought stress under emerging water-saving rice technologies, and model and estimate heat stress-induced spikelet sterility taking South Asia as a case study.
Abstract: Phenotypic plasticity in overcoming heat stress-induced damage across hot tropical rice-growing regions is predominantly governed by relative humidity. Expression of transpiration cooling, an effective heat-avoiding mechanism, will diminish with the transition from fully flooded paddies to water-saving technologies, such as direct-seeded and aerobic rice cultivation, thus further aggravating stress damage. This change can potentially introduce greater sensitivity to previously unaffected developmental stages such as floral meristem (panicle) initiation and spikelet differentiation, and further intensify vulnerability at the known sensitive gametogenesis and flowering stages. More than the mean temperature rise, increased variability and a more rapid increase in nighttime temperature compared with the daytime maximum present a greater challenge. This review addresses (1) the importance of vapour pressure deficit under fully flooded paddies and increased vulnerability of rice production to heat stress or intermittent occurrence of combined heat and drought stress under emerging water-saving rice technologies; (2) the major disconnect with high night temperature response between field and controlled environments in terms of spikelet sterility; (3) highlights the most important mechanisms that affect key grain quality parameters, such as chalk formation under heat stress; and finally (4), we model and estimate heat stress-induced spikelet sterility taking South Asia as a case study.

182 citations


Journal ArticleDOI
TL;DR: The phr1 mutation had a remarkably pronounced effect on the metabolic P-limitation response, providing evidence that PHR1 is a key factor for metabolic reprogramming during P limitation in Arabidopsis thaliana.
Abstract: Massive changes in gene expression occur when plants are subjected to phosphorus (P) limitation, but the breadth of metabolic changes in these conditions and their regulation is barely investigated. Nearly 350 primary and secondary metabolites were profiled in shoots and roots of P-replete and P-deprived Arabidopsis thaliana wild type and mutants of the central P-signalling components PHR1 and PHO2, and microRNA399 overexpresser. In the wild type, the levels of 87 primary metabolites, including phosphorylated metabolites but not 3-phosphoglycerate, decreased, whereas the concentrations of most organic acids, amino acids, nitrogenous compounds, polyhydroxy acids and sugars increased. Furthermore, the levels of 35 secondary metabolites, including glucosinolates, benzoides, phenylpropanoids and flavonoids, were altered during P limitation. Observed changes indicated P-saving strategies, increased photorespiration and crosstalk between P limitation and sulphur and nitrogen metabolism. The phr1 mutation had a remarkably pronounced effect on the metabolic P-limitation response, providing evidence that PHR1 is a key factor for metabolic reprogramming during P limitation. The effects of pho2 or microRNA399 overexpression were comparatively minor. In addition, positive correlations between metabolites and gene transcripts encoding pathway enzymes were revealed. This study provides an unprecedented metabolic phenotype during P limitation in Arabidopsis.

176 citations


Journal ArticleDOI
TL;DR: The recent advances in understanding the molecular mechanisms of ozone uptake, perception and signalling pathways activated during the early steps of ozone response are discussed, and the use of ozone as a tool to study the function of apoplastic ROS in signalling is discussed.
Abstract: Exposure of plants to high ozone concentrations causes lesion formation in sensitive plants Plant responses to ozone involve fast and massive changes in protein activities, gene expression and metabolism even before any tissue damage can be detected Degradation of ozone and subsequent accumulation of reactive oxygen species (ROS) in the extracellular space activates several signalling cascades, which are integrated inside the cell into a fine-balanced network of ROS signalling Reversible protein phosphorylation and degradation plays an important role in the regulation of signalling mechanisms in a complex crosstalk with plant hormones and calcium, an essential second messenger In this review, we discuss the recent advances in understanding the molecular mechanisms of ozone uptake, perception and signalling pathways activated during the early steps of ozone response, and discuss the use of ozone as a tool to study the function of apoplastic ROS in signalling

Journal ArticleDOI
TL;DR: The positive relationship between K concentration and shoot biomass in the mutants suggests that OsHAK1 plays an essential role in K-mediated rice growth and salt tolerance over low and high K concentration ranges.
Abstract: Potassium (K) absorption and translocation in plants rely upon multiple K transporters for adapting varied K supply and saline conditions. Here, we report the expression patterns and physiological roles of OsHAK1, a member belonging to the KT/KUP/HAK gene family in rice (Oryza sativa L.). The expression of OsHAK1 is up-regulated by K deficiency or salt stress in various tissues, particularly in the root and shoot apical meristem, the epidermises and steles of root, and vascular bundles of shoot. Both oshak1 knockout mutants in comparison to their respective Dongjin or Manan wild types showed a dramatic reduction in K concentration and stunted root and shoot growth. Knockout of OsHAK1 reduced the K absorption rate of unit root surface area by ∼50–55 and ∼30%, and total K uptake by ∼80 and ∼65% at 0.05–0.1 and 1 mm K supply level, respectively. The root net high-affinity K uptake of oshak1 mutants was sensitive to salt stress but not to ammonium supply. Overexpression of OsHAK1 in rice increased K uptake and K/Na ratio. The positive relationship between K concentration and shoot biomass in the mutants suggests that OsHAK1 plays an essential role in K-mediated rice growth and salt tolerance over low and high K concentration ranges.

Journal ArticleDOI
TL;DR: In this paper, desktop X-ray microtomography (micro-CT) was used to quantify xylem embolism and thus validate more widespread measurements based upon either hydraulic or acoustic methods.
Abstract: As current methods for measuring xylem embolism in trees are indirect and prone to artefacts, there is an ongoing controversy over the capacity of trees to resist or recover from embolism. The debate will not end until we get direct visualization of the vessel content. Here, we propose desktop X-ray microtomography (micro-CT) as a reference direct technique to quantify xylem embolism and thus validate more widespread measurements based upon either hydraulic or acoustic methods. We used desktop micro-CT to measure embolism levels in dehydrated or centrifuged shoots of laurel - a long-vesseled species thought to display daily cycles of embolism formation and refilling. Our direct observations demonstrate that this Mediterranean species is highly resistant to embolism and is not vulnerable to drought-induced embolism in a normal range of xylem tensions. We therefore recommend that embolism studies in long-vesseled species should be validated by direct methods such as micro-CT to clear up any misunderstandings on their physiology.

Journal ArticleDOI
TL;DR: There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes.
Abstract: Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops.

Journal ArticleDOI
TL;DR: It is reported that OsARF19-overexpression rice lines show an enlarged lamina inclination due to increase of its adaxial cell division, providing novel insights into auxin and BR signalling, and might have significant implications for improving plant architecture of monocot crops.
Abstract: Auxin and brassinosteroid (BR) are important phytohormones for controlling lamina inclination implicated in plant architecture and grain yield. But the molecular mechanism of auxin and BR crosstalk for regulating lamina inclination remains unknown. Auxin response factors (ARFs) control various aspects of plant growth and development. We here report that OsARF19-overexpression rice lines show an enlarged lamina inclination due to increase of its adaxial cell division. OsARF19 is expressed in various organs including lamina joint and strongly induced by auxin and BR. Chromatin immunoprecipitation (ChIP) and yeast one-hybrid assays demonstrate that OsARF19 binds to the promoter of OsGH3-5 and brassinosteroid insensitive 1 (OsBRI1) directing their expression. OsGH3-5-overexpression lines show a similar phenotype as OsARF19-O1. Free auxin contents in the lamina joint of OsGH3-5-O1 or OsARF19-O1 are reduced. OsGH3-5 is localized at the endoplasmic retieulum (ER) matching reduction of the free auxin contents in OsGH3-5-O1. osarf19-TDNA and osgh3-5-Tos17 mutants without erected leaves show a function redundancy with other members of their gene family. OsARF19-overexpression lines are sensitive to exogenous BR treatment and alter the expressions of genes related to BR signalling. These findings provide novel insights into auxin and BR signalling, and might have significant implications for improving plant architecture of monocot crops.

Journal ArticleDOI
TL;DR: This work connects the metabolomic and transcriptomic changes in anthers, pistils before pollination and pollinated pistils in aHeat-tolerant (N22) and a heat-sensitive (Moroberekan) cultivar to identify Constitutive metabolic markers that can define reproductive success in rice under stress.
Abstract: Heat and drought stress are projected to become major challenges to sustain rice (Oryza sativa L) yields with global climate change Both stresses lead to yield losses when they coincide with flowering A significant knowledge gap exists in the mechanistic understanding of the responses of rice floral organs that determine reproductive success under stress Our work connects the metabolomic and transcriptomic changes in anthers, pistils before pollination and pollinated pistils in a heat-tolerant (N22) and a heat-sensitive (Moroberekan) cultivar Systematic analysis of the floral organs revealed contrasts in metabolic profiles across anthers and pistils Constitutive metabolic markers were identified that can define reproductive success in rice under stress Six out of nine candidate metabolites identified by intersection analysis of stressed anthers were differentially accumulated in N22 compared with Moroberekan under non-stress conditions Sugar metabolism was identified to be the crucial metabolic and transcriptional component that differentiated floral organ tolerance or susceptibility to stress While susceptible Moroberekan specifically showed high expression of the Carbon Starved Anthers (CSA) gene under combined heat and drought, tolerant N22 responded with high expression of genes encoding a sugar transporter (MST8) and a cell wall invertase (INV4) as markers of high sink strength

Journal ArticleDOI
TL;DR: The results demonstrate that dsRNAs can be absorbed by crop roots, trigger plant and insect RNAi and enhance piercing-sucking and stem-borer insect mortality rates and indicate that the root dsRNA soaking can be used as a bioinsecticide strategy during crop irrigation.
Abstract: Insect double-stranded (ds)RNA expression in transgenic crops can increase plant resistance to biotic stress; however, creating transgenic crops to defend against every insect pest is impractical. Arabidopsis Mob1A is required for organ growth and reproduction. When Arabidopsis roots were soaked in dsMob1A, the root lengths and numbers were significantly suppressed and plants could not bolt or flower. Twenty-four hours after rice roots were immersed in fluorescent-labelled dsEYFP (enhanced yellow fluorescent protein), fluorescence was observed in the rice sheath and stem and in planthoppers feeding on the rice. The expression levels of Ago and Dicer in rice and planthoppers were induced by dsEYFP. When rice roots were soaked in dsActin, their growth was also significantly suppressed. When planthoppers or Asian corn borers fed on rice or maize that had been irrigated with a solution containing the dsRNA of an insect target gene, the insect's mortality rate increased significantly. Our results demonstrate that dsRNAs can be absorbed by crop roots, trigger plant and insect RNAi and enhance piercing-sucking and stem-borer insect mortality rates. We also confirmed that dsRNA was stable under outdoor conditions. These results indicate that the root dsRNA soaking can be used as a bioinsecticide strategy during crop irrigation.

Journal ArticleDOI
TL;DR: It is demonstrated that OsHAK21 may mediate K(+) absorption by the plasma membrane and play crucial roles in the maintenance of the Na(+) /K(+) homeostasis in rice under salt stress.
Abstract: The intracellular potassium (K(+) ) homeostasis, which is crucial for plant survival in saline environments, is modulated by K(+) channels and transporters. Some members of the high-affinity K(+) transporter (HAK) family are believed to function in the regulation of plant salt tolerance, but the physiological mechanisms remain unclear. Here, we report a significant inducement of OsHAK21 expression by high-salinity treatment and provide genetic evidence of the involvement of OsHAK21 in rice salt tolerance. Disruption of OsHAK21 rendered plants sensitive to salt stress. Compared with the wild type, oshak21 accumulated less K(+) and considerably more Na(+) in both shoots and roots, and had a significantly lower K(+) net uptake rate but higher Na(+) uptake rate. Our analyses of subcellular localizations and expression patterns showed that OsHAK21 was localized in the plasma membrane and expressed in xylem parenchyma and individual endodermal cells (putative passage cells). Further functional characterizations of OsHAK21 in K(+) uptake-deficient yeast and Arabidopsis revealed that OsHAK21 possesses K(+) transporter activity. These results demonstrate that OsHAK21 may mediate K(+) absorption by the plasma membrane and play crucial roles in the maintenance of the Na(+) /K(+) homeostasis in rice under salt stress.

Journal ArticleDOI
TL;DR: The difference in leaf structural features between low N supplement and HN indicates that a rapid change in gm is related to the regulation of diffusion through biological membranes rather than leaf structural Features, and will contribute to an understanding of the determinants of gm response to rapid changes in environmental factors.
Abstract: Photosynthesis in C3 plants is significantly limited by mesophyll conductance (gm ), which can vary with leaf anatomical traits and nitrogen (N) supplements. Several studies have investigated the response of gm to N supplements; however, none examined the implications of N supplements on the response of gm to rapid environmental changes. Here we investigated the effect of N supplement on gm and the response of gm to change of CO2 , temperature and irradiance in rice. High N supplement (HN) increased mesophyll cell wall surface area and chloroplast surface area exposed to intercellular airspace per leaf area, and reduced cell wall thickness. These changes resulted in increased gm . The gm of leaves with HN was more sensitive to changes in CO2 concentration, temperature and irradiance. The difference in leaf structural features between low N supplement and HN indicates that a rapid change in gm is related to the regulation of diffusion through biological membranes rather than leaf structural features. These results will contribute to an understanding of the determinants of gm response to rapid changes in environmental factors.

Journal ArticleDOI
TL;DR: The calculations presented here suggest that apoplastic pathways provide the majority of conductance outside the bundle sheath under most conditions, whereas symplastic pathways contribute only a small proportion.
Abstract: Water movement from the xylem to stomata is poorly understood. There is still no consensus about whether apoplastic or symplastic pathways are more important, and recent work suggests vapour diffusion may also play a role. The objective of this study was to estimate the proportions of hydraulic conductance outside the bundle sheath contributed by apoplastic, symplastic and gas phase pathways, using a novel analytical framework based on measurable anatomical and biophysical parameters. The calculations presented here suggest that apoplastic pathways provide the majority of conductance outside the bundle sheath under most conditions, whereas symplastic pathways contribute only a small proportion. The contributions of apoplastic and gas phase pathways vary depending on several critical but poorly known or highly variable parameters namely, the effective Poiseuille radius for apoplastic bulk flow, the thickness of cell walls and vertical temperature gradients within the leaf. The gas phase conductance should increase strongly as the leaf centre becomes warmer than the epidermis - providing up to 44% of vertical water transport for a temperature gradient of 0.2 K. These results may help to explain how leaf water transport is influenced by light absorption, temperature and differences in leaf anatomy among species.

Journal ArticleDOI
TL;DR: Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components, suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level.
Abstract: Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.

Journal ArticleDOI
TL;DR: RNA sequencing is applied to profile early leaf development using five distinct developmental stages, which were quantified by successive collections of the first true leaves of Limonium bicolor with precise spatial and temporal resolution and found that genes controlling salt gland differentiation in L. bicolor may evolve in a trichome formation.
Abstract: With the expansion of saline land worldwide, it is essential to establish a model halophyte to study the salt-tolerance mechanism. The salt glands in the epidermis of Limonium bicolor (a recretohalophyte) play a pivotal role in salt tolerance by secreting excess salts from tissues. Despite the importance of salt secretion, nothing is known about the molecular mechanisms of salt gland development. In this study, we applied RNA sequencing to profile early leaf development using five distinct developmental stages, which were quantified by successive collections of the first true leaves of L. bicolor with precise spatial and temporal resolution. Specific gene expression patterns were identified for each developmental stage. In particular, we found that genes controlling salt gland differentiation in L. bicolor may evolve in a trichome formation, which was also confirmed by mutants with increased salt gland densities. Genes involved in the special ultrastructure of salt glands were also elucidated. Twenty-six genes were proposed to participate in salt gland differentiation. Our dataset sheds light on the molecular processes underpinning salt gland development and thus represents a first step towards the bioengineering of active salt-secretion capacity in crops.

Journal ArticleDOI
TL;DR: The data provide evidence for an important role of flavonoid metabolism in Arabidopsis freezing tolerance and point to the importance of post-transcriptional mechanisms in the regulation of flav onoids metabolism in response to cold.
Abstract: In plants from temperate climates such as Arabidopsis thaliana, low, non-freezing temperatures lead to increased freezing tolerance in a process termed cold acclimation. During cold acclimation, massive changes in gene expression and in the content of primary metabolites and lipids have been observed. Here, we have analysed the influence of cold acclimation on flavonol and anthocyanin content and on the expression of genes related to flavonoid metabolism in 54 Arabidopsis accessions covering a wide range of freezing tolerance. Most flavonols and anthocyanins accumulated upon cold exposure, but the extent of accumulation varied strongly among the accessions. This was also true for most of the investigated transcripts. Correlation analyses revealed a high degree of coordination among metabolites and among transcripts, but only little correlation between metabolites and transcripts, indicating an important role of post-transcriptional regulation in flavonoid metabolism. Similarly, levels of many flavonoid biosynthesis genes were correlated with freezing tolerance after cold acclimation, but only the pool sizes of a few flavonols and anthocyanins. Collectively, our data provide evidence for an important role of flavonoid metabolism in Arabidopsis freezing tolerance and point to the importance of post-transcriptional mechanisms in the regulation of flavonoid metabolism in response to cold.

Journal ArticleDOI
TL;DR: It is found that the quantity of drought-induced phytoalexins is positively correlated with the root-to-shoot ratio of different maize varieties, and it is demonstrated that mutant an2 plants deficient in kauralexin production are more sensitive to drought.
Abstract: Maize (Zea mays) production, which is of global agro-economic importance, is largely limited by herbivore pests, pathogens and environmental conditions, such as drought. Zealexins and kauralexins belong to two recently identified families of acidic terpenoid phytoalexins in maize that mediate defence against both pathogen and insect attacks in aboveground tissues. However, little is known about their function in belowground organs and their potential to counter abiotic stress. In this study, we show that zealexins and kauralexins accumulate in roots in response to both biotic and abiotic stress including, Diabrotica balteata herbivory, Fusarium verticillioides infection, drought and high salinity. We find that the quantity of drought-induced phytoalexins is positively correlated with the root-to-shoot ratio of different maize varieties, and further demonstrate that mutant an2 plants deficient in kauralexin production are more sensitive to drought. The induction of phytoalexins in response to drought is root specific and does not influence phytoalexin levels aboveground; however, the accumulation of phytoalexins in one tissue may influence the induction capacity of other tissues.

Journal ArticleDOI
TL;DR: It is suggested that exogenous ABA can decrease Zn concentrations in P. × canescens under excess Zn for 7 d, likely by modulating the transcript levels of key genes involved in Zn uptake and detoxification.
Abstract: A greenhouse experiment was conducted to study whether exogenous abscisic acid (ABA) mediates the responses of poplars to excess zinc (Zn). Populus × canescens seedlings were treated with either basal or excess Zn levels and either 0 or 10 μm ABA. Excess Zn led to reduced photosynthetic rates, increased Zn accumulation, induced foliar ABA and salicylic acid (SA), decreased foliar gibberellin (GA3 ) and auxin (IAA), elevated root H2 O2 levels, and increased root ratios of glutathione (GSH) to GSSG and foliar ratios of ascorbate (ASC) to dehydroascorbate (DHA) in poplars. While exogenous ABA decreased foliar Zn concentrations with 7 d treatments, it increased levels of endogenous ABA, GA3 and SA in roots, and resulted in highly increased foliar ASC accumulation and ratios of ASC to DHA. The transcript levels of several genes involved in Zn uptake and detoxification, such as yellow stripe-like family protein 2 (YSL2) and plant cadmium resistance protein 2 (PCR2), were enhanced in poplar roots by excess Zn but repressed by exogenous ABA application. These results suggest that exogenous ABA can decrease Zn concentrations in P. × canescens under excess Zn for 7 d, likely by modulating the transcript levels of key genes involved in Zn uptake and detoxification.

Journal ArticleDOI
TL;DR: The results show the existence of genetic variation in soybean response to elevated [CO2], which is needed to breed soybean to the future atmospheric environment.
Abstract: Rising atmospheric [CO2] is a uniform, global change that increases C-3 photosynthesis and could offset some of the negative effects of global climate change on crop yields. Genetic variation in yield responsiveness to rising [CO2] would provide an opportunity to breed more responsive crop genotypes. A multi-year study of 18 soybean (Glycine maxMerr.) genotypes was carried out to identify variation in responsiveness to season-long elevated [CO2] (550ppm) under fully open-air replicated field conditions. On average across 18 genotypes, elevated [CO2] stimulated total above-ground biomass by 22%, but seed yield by only 9%, in part because most genotypes showed a reduction in partitioning of energy to seeds. Over four years of study, there was consistency from year to year in the genotypes that were most and least responsive to elevated [CO2], suggesting heritability of CO2 response. Further analysis of six genotypes did not reveal a photosynthetic basis for the variation in yield response. Although partitioning to seed was decreased, cultivars with the highest partitioning coefficient in current [CO2] also had the highest partitioning coefficient in elevated [CO2]. The results show the existence of genetic variation in soybean response to elevated [CO2], which is needed to breed soybean to the future atmospheric environment. This study investigated the response of 18 soybean varieties to elevated carbon dioxide concentrations ([CO2]) in the field. There was variation in the response of seed yield in the genotypes, ranging from no stimulation to a 22% increase in yield, and consistency from year to year in the varieties that were the most and least responsive to elevated [CO2]. Results support the potential to breed crops for enhanced CO2 response.

Journal ArticleDOI
TL;DR: Progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies is discussed and their potential for providing a better understanding of root:soil interactions is discussed.
Abstract: The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.

Journal ArticleDOI
TL;DR: It is confirmed that ferns do have lower photosynthetic capacity than angiosperms and quantifying these differences and determining the importance of diffusional versus biochemical limitations; and the potential implication of leaf anatomical traits in setting the photosynthesis capacity in both groups is analyzed.
Abstract: Ferns are thought to have lower photosynthetic rates than angiosperms and they lack fine stomatal regulation. However, no study has directly compared photosynthesis in plants of both groups grown under optimal conditions in a common environment. We present a common garden com- parison of seven angiosperms and seven ferns paired by habitat preference, with the aims of (1) confirming that ferns do have lower photosynthesis capacity than angiosperms and quantifying these differences; (2) determining the impor- tance of diffusional versus biochemical limitations; and (3) analysing the potential implication of leaf anatomical traits in setting the photosynthesis capacity in both groups. On average,the photosynthetic rate of ferns was about half that of angiosperms, and they exhibited lower stomatal and mesophyll conductance to CO2 (gm), maximum velocity of carboxylation and electron transport rate. A quantitative limitation analysis revealed that stomatal and mesophyll con- ductances were co-responsible for the lower photosynthesis of ferns as compared with angiosperms. However, gm alone was the most constraining factor for photosynthesis in ferns. Consistently, leaf anatomy showed important differences between angiosperms and ferns, especially in cell wall thick- ness and the surface of chloroplasts exposed to intercellular air spaces.

Journal ArticleDOI
TL;DR: It is concluded that GSH depletion significantly increases the redox potentials of the nucleus and cytosol, and causes arrest of the cell cycle in roots but not shoots, with accompanying transcript changes linked to altered hormone responses, but not oxidative stress.
Abstract: Reduced glutathione (GSH) is considered to exert a strong influence on cellular redox homeostasis and to regulate gene expression, but these processes remain poorly characterized. Severe GSH depletion specifically inhibited root meristem development, while low root GSH levels decreased lateral root densities. The redox potential of the nucleus and cytosol of Arabidopsis thaliana roots determined using roGFP probes was between -300 and -320 mV. Growth in the presence of the GSH-synthesis inhibitor buthionine sulfoximine (BSO) increased the nuclear and cytosolic redox potentials to approximately -260 mV. GSH-responsive genes including transcription factors (SPATULA, MYB15, MYB75), proteins involved in cell division, redox regulation (glutaredoxinS17, thioredoxins, ACHT5 and TH8) and auxin signalling (HECATE), were identified in the GSH-deficient root meristemless 1-1 (rml1-1) mutant, and in other GSH-synthesis mutants (rax1-1, cad2-1, pad2-1) as well as in the wild type following the addition of BSO. Inhibition of auxin transport had no effect on organ GSH levels, but exogenous auxin decreased the root GSH pool. We conclude that GSH depletion significantly increases the redox potentials of the nucleus and cytosol, and causes arrest of the cell cycle in roots but not shoots, with accompanying transcript changes linked to altered hormone responses, but not oxidative stress.

Journal ArticleDOI
TL;DR: The molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed.
Abstract: Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed.