scispace - formally typeset
Search or ask a question

Showing papers in "Translational neurodegeneration in 2020"


Journal ArticleDOI
TL;DR: The roles of inflammatory response in neurodegenerative diseases are discussed, focusing on the contributions of microglia and astrocytes and their relationship, and biomarkers to measure neuro inflammation and studies on therapeutic drugs that can modulate neuroinflammation are discussed.
Abstract: Neuroinflammation is associated with neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Microglia and astrocytes are key regulators of inflammatory responses in the central nervous system. The activation of microglia and astrocytes is heterogeneous and traditionally categorized as neurotoxic (M1-phenotype microglia and A1-phenotype astrocytes) or neuroprotective (M2-phenotype microglia and A2-phenotype astrocytes). However, this dichotomized classification may not reflect the various phenotypes of microglia and astrocytes. The relationship between these activated glial cells is also very complicated, and the phenotypic distribution can change, based on the progression of neurodegenerative diseases. A better understanding of the roles of microglia and astrocytes in neurodegenerative diseases is essential for developing effective therapies. In this review, we discuss the roles of inflammatory response in neurodegenerative diseases, focusing on the contributions of microglia and astrocytes and their relationship. In addition, we discuss biomarkers to measure neuroinflammation and studies on therapeutic drugs that can modulate neuroinflammation.

616 citations


Journal ArticleDOI
TL;DR: Adjusting metal balance by supplementing or chelating the metal ions may be potential in ameliorating AD pathologies, which provides new research directions for AD treatment.
Abstract: The homeostasis of metal ions, such as iron, copper, zinc and calcium, in the brain is crucial for maintaining normal physiological functions. Studies have shown that imbalance of these metal ions in the brain is closely related to the onset and progression of Alzheimer’s disease (AD), the most common neurodegenerative disorder in the elderly. Erroneous deposition/distribution of the metal ions in different brain regions induces oxidative stress. The metal ions imbalance and oxidative stress together or independently promote amyloid-β (Aβ) overproduction by activating β- or γ-secretases and inhibiting α-secretase, it also causes tau hyperphosphorylation by activating protein kinases, such as glycogen synthase kinase-3β (GSK-3β), cyclin-dependent protein kinase-5 (CDK5), mitogen-activated protein kinases (MAPKs), etc., and inhibiting protein phosphatase 2A (PP2A). The metal ions imbalances can also directly or indirectly disrupt organelles, causing endoplasmic reticulum (ER) stress; mitochondrial and autophagic dysfunctions, which can cause or aggravate Aβ and tau aggregation/accumulation, and impair synaptic functions. Even worse, the metal ions imbalance-induced alterations can reversely exacerbate metal ions misdistribution and deposition. The vicious cycles between metal ions imbalances and Aβ/tau abnormalities will eventually lead to a chronic neurodegeneration and cognitive deficits, such as seen in AD patients. The metal ions imbalance induces Aβ and tau pathologies by directly or indirectly affecting multiple cellular/subcellular pathways, and the disrupted homeostasis can reversely aggravate the abnormalities of metal ions transportation/deposition. Therefore, adjusting metal balance by supplementing or chelating the metal ions may be potential in ameliorating AD pathologies, which provides new research directions for AD treatment.

170 citations


Journal ArticleDOI
TL;DR: V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells and is linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegnerative lysOSomal storage disorders.
Abstract: Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.

65 citations


Journal ArticleDOI
TL;DR: Several risk factors of FOG have been identified, but need combinatorial optimization for predicting FOG more precisely and firm conclusions cannot be drawn on therapeutic efficacy, although the literature suggested that some therapeutic strategies showed promise.
Abstract: Freezing of gait (FOG) is a common, disabling symptom of Parkinson’s disease (PD), but the mechanisms and treatments of FOG remain great challenges for clinicians and researchers. The main focus of this review is to summarize the possible mechanisms underlying FOG, the risk factors for screening and predicting the onset of FOG, and the clinical trials involving various therapeutic strategies. In addition, the limitations and recommendations for future research design are also discussed. In the mechanism section, we briefly introduced the physiological process of gait control and hypotheses about the mechanism of FOG. In the risk factor section, gait disorders, PIGD phenotype, lower striatal DAT uptake were found to be independent risk factors of FOG with consistent evidence. In the treatment section, we summarized the clinical trials of pharmacological and non-pharmacological treatments. Despite the limited effectiveness of current medications for FOG, especially levodopa resistant FOG, there were some drugs that showed promise such as istradefylline and rasagiline. Non-pharmacological treatments encompass invasive brain and spinal cord stimulation, noninvasive repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) and vagus nerve stimulation (VNS), and physiotherapeutic approaches including cues and other training strategies. Several novel therapeutic strategies seem to be effective, such as rTMS over supplementary motor area (SMA), dual-site DBS, spinal cord stimulation (SCS) and VNS. Of physiotherapy, wearable cueing devices seem to be generally effective and promising. FOG model hypotheses are helpful for better understanding and characterizing FOG and they provide clues for further research exploration. Several risk factors of FOG have been identified, but need combinatorial optimization for predicting FOG more precisely. Although firm conclusions cannot be drawn on therapeutic efficacy, the literature suggested that some therapeutic strategies showed promise.

63 citations


Journal ArticleDOI
TL;DR: A novel perspective to understand the pathogenesis of AD and develop interventions for this disease from a systemic approach is provided and future strategies to enhance peripheral Aβ clearance for the prevention and treatment of AD are proposed.
Abstract: Alzheimer’s disease (AD) is the most common type of dementia, and no disease-modifying treatments are available to halt or slow its progression. Amyloid-beta (Aβ) is suggested to play a pivotal role in the pathogenesis of AD, and clearance of Aβ from the brain becomes a main therapeutic strategy for AD. Recent studies found that Aβ clearance in the periphery contributes substantially to reducing Aβ accumulation in the brain. Therefore, understanding the mechanism of how Aβ is cleared in the periphery is important for the development of effective therapies for AD. In this review, we summarized recent findings on the mechanisms of Aβ efflux from the brain to the periphery and discuss where and how the brain-derived Aβ is cleared in the periphery. Based on these findings, we propose future strategies to enhance peripheral Aβ clearance for the prevention and treatment of AD. This review provides a novel perspective to understand the pathogenesis of AD and develop interventions for this disease from a systemic approach.

59 citations


Journal ArticleDOI
TL;DR: A historical aspect of cell therapies in Parkinson’s disease is provided, and the various challenges pertaining to the safety and efficacy of stem cell-based cell transplantations are discussed, and how these hurdles were eventually overcome.
Abstract: Stem cells hold tremendous promise for regenerative medicine because they can be expanded infinitely, giving rise to large numbers of differentiated cells required for transplantation. Stem cells can be derived from fetal sources, embryonic origins (embryonic stem cells or ESCs) or reprogrammed from adult cell types (induced pluripotent stem cells or iPSCs). One unique property of stem cells is their ability to be directed towards specific cell types of clinical interest, and can mature into functional cell types in vivo. While transplantations of fetal or ESC-derived tissues are known to illicit a host immunogenic response, autologous transplantations using cell types derived from one’s own iPSCs eliminate risks of tissue rejection and reduce the need for immunosuppressants. However, even with these benefits, cell therapy comes with significant hurdles that researchers are starting to overcome. In this review, we will discuss the various steps to ensure safety, efficacy and clinical practicality of cell replacement therapy in neurodegenerative diseases, in particular, Parkinson’s disease. Parkinson’s disease (PD) results from a loss of dopaminergic neurons from the substantia nigra and is an ideal target for cell replacement therapy. Early trials using fetal midbrain material in the late 1980s have resulted in long term benefit for some patients, but there were multiple shortcomings including the non-standardization and quality control of the transplanted fetal material, and graft-induced dyskinesia that some patients experience as a result. On the other hand, pluripotent stem cells such as ESCs and iPSCs serve as an attractive source of cells because they can be indefinitely cultured and is an unlimited source of cells. Stem cell technologies and our understanding of the developmental potential of ESCs and iPSCs have deepened in recent years and a clinical trial for iPSC-derived dopaminergic cells is currently undergoing for PD patients in Japan. In this focused review, we will first provide a historical aspect of cell therapies in PD, and then discuss the various challenges pertaining to the safety and efficacy of stem cell-based cell transplantations, and how these hurdles were eventually overcome. With the maturity of the iPSC technology, cell transplantation appears to be a safe and effective therapy. Grafts in non-human primates survive and remain functional for more than 2 years after transplantation, with no signs of tumorigenesis, indicating safety and efficacy of the treatment. However, immunosuppressants are still required because of the lack of “universal stem cells” that would not evoke an immune response. The results of ongoing and upcoming trials by a global consortium known as GForce-PD would be highly anticipated because the success of these trials would open up possibilities for using cell therapy for the treatment of PD and other degenerative diseases.

52 citations


Journal ArticleDOI
TL;DR: This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM) with similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms.
Abstract: Mitochondrial dysfunction plays a central role in the formation of neuroinflammation and oxidative stress, which are important factors contributing to the development of brain disease. Ample evidence suggests mitochondria are a promising target for neuroprotection. Recently, methods targeting mitochondria have been considered as potential approaches for treatment of brain disease through the inhibition of inflammation and oxidative injury. This review will discuss two widely studied approaches for the improvement of brain mitochondrial respiration, methylene blue (MB) and photobiomodulation (PBM). MB is a widely studied drug with potential beneficial effects in animal models of brain disease, as well as limited human studies. Similarly, PBM is a non-invasive treatment that promotes energy production and reduces both oxidative stress and inflammation, and has garnered increasing attention in recent years. MB and PBM have similar beneficial effects on mitochondrial function, oxidative damage, inflammation, and subsequent behavioral symptoms. However, the mechanisms underlying the energy enhancing, antioxidant, and anti-inflammatory effects of MB and PBM differ. This review will focus on mitochondrial dysfunction in several different brain diseases and the pathological improvements following MB and PBM treatment.

50 citations


Journal ArticleDOI
TL;DR: The findings of this study provide insight into the compensatory mechanism of the functional connectome underlying SCD and highlight the potential of connectome-based metrics for the identification of the preclinical stage of AD.
Abstract: Subjective cognitive decline (SCD) is a preclinical stage along the Alzheimer’s disease (AD) continuum. However, little is known about the aberrant patterns of connectivity and topological alterations of the brain functional connectome and their diagnostic value in SCD. Resting-state functional magnetic resonance imaging and graph theory analyses were used to investigate the alterations of the functional connectome in 66 SCD individuals and 64 healthy controls (HC). Pearson correlation analysis was computed to assess the relationships among network metrics, neuropsychological performance and pathological biomarkers. Finally, we used the multiple kernel learning-support vector machine (MKL-SVM) to differentiate the SCD and HC individuals. SCD individuals showed higher nodal topological properties (including nodal strength, nodal global efficiency and nodal local efficiency) associated with amyloid-β levels and memory function than the HC, and these regions were mainly located in the default mode network (DMN). Moreover, increased local and medium-range connectivity mainly between the bilateral parahippocampal gyrus (PHG) and other DMN-related regions was found in SCD individuals compared with HC individuals. These aberrant functional network measures exhibited good classification performance in the differentiation of SCD individuals from HC individuals at an accuracy up to 79.23%. The findings of this study provide insight into the compensatory mechanism of the functional connectome underlying SCD. The proposed classification method highlights the potential of connectome-based metrics for the identification of the preclinical stage of AD.

48 citations


Journal ArticleDOI
TL;DR: Connectomic approaches reveal a number of hubs in the olfactory system that are key interconnectors with the main hubs of network dysfunction in Alzheimer's and Parkinson's diseases, and why some neuronal populations are vulnerable while others are resistant to pathology and to what extent glia prevent and/or facilitate proteinopathy spreading.
Abstract: Alzheimer’s and Parkinson’s diseases are the most prevalent neurodegenerative disorders. Their etiologies are idiopathic, and treatments are symptomatic and orientated towards cognitive or motor deficits. Neuropathologically, both are proteinopathies with pathological aggregates (plaques of amyloid-β peptide and neurofibrillary tangles of tau protein in Alzheimer’s disease, and Lewy bodies mostly composed of α-synuclein in Parkinson’s disease). These deposits appear in the nervous system in a predictable and accumulative sequence with six neuropathological stages. Both disorders present a long prodromal period, characterized by preclinical signs including hyposmia. Interestingly, the olfactory system, particularly the anterior olfactory nucleus, is initially and preferentially affected by the pathology. Cerebral atrophy revealed by magnetic resonance imaging must be complemented by histological analyses to ascertain whether neuronal and/or glial loss or neuropil remodeling are responsible for volumetric changes. It has been proposed that these proteinopathies could act in a prion-like manner in which a misfolded protein would be able to force native proteins into pathogenic folding (seeding), which then propagates through neurons and glia (spreading). Existing data have been examined to establish why some neuronal populations are vulnerable while others are resistant to pathology and to what extent glia prevent and/or facilitate proteinopathy spreading. Connectomic approaches reveal a number of hubs in the olfactory system (anterior olfactory nucleus, olfactory entorhinal cortex and cortical amygdala) that are key interconnectors with the main hubs (the entorhinal–hippocampal–cortical and amygdala–dorsal motor vagal nucleus) of network dysfunction in Alzheimer’s and Parkinson’s diseases.

47 citations


Journal ArticleDOI
TL;DR: Based on the conversion and aggregation mechanism of α-synuclein, novel diagnostic tests, such as protein misfolding seeded conversion assays, e.g. the real-time quaking-induced conversion (RT-QuIC), had been developed and can be used to study the α- Synuclein-seeding-characteristics of different α- synucleinopathies and to differentiate between DLB and PD.
Abstract: α-Synuclein is a small soluble protein, whose physiological function in the healthy brain is poorly understood. Intracellular inclusions of α-synuclein, referred to as Lewy bodies (LBs), are pathological hallmarks of α-synucleinopathies, such as Parkinson’s disease (PD) or dementia with Lewy bodies (DLB). Understanding of the molecular basis as well as the factors or conditions promoting α-synuclein misfolding and aggregation is an important step towards the comprehension of pathological mechanism of α-synucleinopathies and for the development of efficient therapeutic strategies. Based on the conversion and aggregation mechanism of α-synuclein, novel diagnostic tests, such as protein misfolding seeded conversion assays, e.g. the real-time quaking-induced conversion (RT-QuIC), had been developed. In diagnostics, α-synuclein RT-QuIC exhibits a specificity between 82 and 100% while the sensitivity varies between 70 and 100% among different laboratories. In addition, the α-synuclein RT-QuIC can be used to study the α-synuclein-seeding-characteristics of different α-synucleinopathies and to differentiate between DLB and PD. The variable diagnostic accuracy of current α-synuclein RT-QuIC occurs due to different protocols, cohorts and material etc.. An impact of micro-environmental factors on the α-synuclein aggregation and conversion process and the occurrence and detection of differential misfolded α-synuclein types or strains might underpin the clinical heterogeneity of α-synucleinopathies.

44 citations


Journal ArticleDOI
TL;DR: The aim is to provide a better understanding of the feasibility, safety, selection process, and clinical effectiveness of DBS treatment for select cases of severe and medically intractable TS.
Abstract: Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder characterized by the presence of multiple motor and vocal tics. TS usually co-occurs with one or multiple psychiatric disorders. Although behavioral and pharmacological treatments for TS are available, some patients do not respond to the available treatments. For these patients, TS is a severe, chronic, and disabling disorder. In recent years, deep brain stimulation (DBS) of basal ganglia-thalamocortical networks has emerged as a promising intervention for refractory TS with or without psychiatric comorbidities. Three major challenges need to be addressed to move the field of DBS treatment for TS forward: (1) patient and DBS target selection, (2) ethical concerns with treating pediatric patients, and (3) DBS treatment optimization and improvement of individual patient outcomes (motor and phonic tics, as well as functioning and quality of life). The Tourette Association of America and the American Academy of Neurology have recently released their recommendations regarding surgical treatment for refractory TS. Here, we describe the challenges, advancements, and promises of the use of DBS in the treatment of TS. We summarize the results of clinical studies and discuss the ethical issues involved in treating pediatric patients. Our aim is to provide a better understanding of the feasibility, safety, selection process, and clinical effectiveness of DBS treatment for select cases of severe and medically intractable TS.

Journal ArticleDOI
TL;DR: Genotype-phenotype correlation analysis revealed that the carriers of GCH1 deleterious variants manifested younger AAO, and had milder motor symptoms, milder fatigue symptoms and more autonomic nervous dysfunctions, which may help design experimental studies to elucidate the mechanisms of G CH1 in the pathogenesis of PD.
Abstract: Common and rare variants of guanosine triphosphate cyclohydrolase 1 (GCH1) gene may play important roles in Parkinson’s disease (PD). However, there is a lack of comprehensive analysis of GCH1 genotypes, especially in non-coding regions. The aim of this study was to explore the genetic characteristics of GCH1, including rare and common variants in coding and non-coding regions, in a large population of PD patients in Chinese mainland, as well as the phenotypic characteristics of GCH1 variant carriers. In the first cohort of this case-control study, we performed whole-exome sequencing in 1555 patients with early-onset or familial PD and 2234 healthy controls; then in the second cohort, whole-genome sequencing was performed in sporadic late-onset PD samples (1962 patients), as well as 1279 controls. Variants at target GCH1 regions were extracted, and then genetic and detailed phenotypic data were analyzed using regression models and the sequence kernel association test. We also performed a meta-analysis to correlate deleterious GCH1 variants with age at onset (AAO) in PD patients. For coding variants, we identified a significant burden of GCH1 deleterious variants in early-onset or familial PD cases compared to controls (1.2% vs 0.1%, P < 0.0001). In the analysis of possible regulatory variants in GCH1 non-coding regions, rs12323905 (P = 0.001, odds ratio = 1.19, 95%CI 1.07–1.32) was significantly associated with PD, and variant sets in untranslated regions and intron regions, GCH1 brain-specific expression quantitative trait loci, and two possible promoter/enhancer (GH14J054857 and GH14J054880) were suggestively associated with PD. Genotype-phenotype correlation analysis revealed that the carriers of GCH1 deleterious variants manifested younger AAO (P < 0.0001), and had milder motor symptoms, milder fatigue symptoms and more autonomic nervous dysfunctions. Meta-analysis of six studies demonstrated 6.4-year earlier onset in GCH1 deleterious variant carriers (P = 0.0009). The results highlight the importance of deleterious variants and non-coding variants of GCH1 in PD in Chinese mainland and suggest that GCH1 mutation can influence the PD phenotype, which may help design experimental studies to elucidate the mechanisms of GCH1 in the pathogenesis of PD.

Journal ArticleDOI
TL;DR: Insight into the mechanism which regulates the uptake of pathological α-synuclein into oligodendrocyte precursor cells may yield the development of the disease-modifying therapy for MSA.
Abstract: Multiple system atrophy (MSA) is a debilitating and fatal neurodegenerative disorder. The disease severity warrants urgent development of disease-modifying therapy, but the disease pathogenesis is still enigmatic. Neurodegeneration in MSA brains is preceded by the emergence of glial cytoplasmic inclusions (GCIs), which are insoluble α-synuclein accumulations within oligodendrocytes (OLGs). Thus, preventive strategies against GCI formation may suppress disease progression. However, although numerous studies have tried to elucidate the molecular pathogenesis of GCI formation, difficulty remains in understanding the pathological interaction between the two pivotal aspects of GCIs; α-synuclein and OLGs. The difficulty originates from several enigmas: 1) what triggers the initial generation and possible propagation of pathogenic α-synuclein species? 2) what contributes to OLG-specific accumulation of α-synuclein, which is abundantly expressed in neurons but not in OLGs? and 3) how are OLGs and other glial cells affected and contribute to neurodegeneration? The primary pathogenesis of GCIs may involve myelin dysfunction and dyshomeostasis of the oligodendroglial cellular environment such as autophagy and iron metabolism. We have previously reported that oligodendrocyte precursor cells are more prone to develop intracellular inclusions in the presence of extracellular fibrillary α-synuclein. This finding implies a possibility that the propagation of GCI pathology in MSA brains is mediated through the internalization of pathological α-synuclein into oligodendrocyte precursor cells. In this review, in order to discuss the pathogenesis of GCIs, we will focus on the composition of neuronal and oligodendroglial inclusions in synucleinopathies. Furthermore, we will introduce some hypotheses on how α-synuclein pathology spreads among OLGs in MSA brains, in the light of our data from the experiments with primary oligodendrocyte lineage cell culture. While various reports have focused on the mysterious source of α-synuclein in GCIs, insights into the mechanism which regulates the uptake of pathological α-synuclein into oligodendroglial cells may yield the development of the disease-modifying therapy for MSA. The interaction between glial cells and α-synuclein is also highlighted with previous studies of post-mortem human brains, cultured cells, and animal models, which provide comprehensive insight into GCIs and the MSA pathomechanisms.

Journal ArticleDOI
TL;DR: The differential expression of representative genes was responsible for neuropathological phenotypes in Alzheimer’s disease, which could be used to construct gene-specific patterns and establish statistical regression model for the evaluation of therapeutic effect.
Abstract: Alzheimer’s disease is a neurodegenerative disorder. Therapeutically, a transplantation of bone marrow mesenchymal stem cells (BMMSCs) can play a beneficial role in animal models of Alzheimer’s disease. However, the relevant mechanism remains to be fully elucidated. Subsequent to the transplantation of BMMSCs, memory loss and cognitive impairment were significantly improved in animal models with Alzheimer’s disease (AD). Potential mechanisms involved neurogenesis, apoptosis, angiogenesis, inflammation, immunomodulation, etc. The above mechanisms might play different roles at certain stages. It was revealed that the transplantation of BMMSCs could alter some gene levels. Moreover, the differential expression of representative genes was responsible for neuropathological phenotypes in Alzheimer’s disease, which could be used to construct gene-specific patterns. Multiple signal pathways involve therapeutic mechanisms by which the transplantation of BMMSCs improves cognitive and behavioral deficits in AD models. Gene expression profile can be utilized to establish statistical regression model for the evaluation of therapeutic effect. The transplantation of autologous BMMSCs maybe a prospective therapy for patients with Alzheimer’s disease.

Journal ArticleDOI
TL;DR: The recent advances in the role of δ-secretase in neurodegenerative diseases are reviewed, with a focus on its biochemical properties and the transcriptional and posttranslational regulation of its activity, and the clinical implications are discussed.
Abstract: Mammalian asparagine endopeptidase (AEP) is a cysteine protease that cleaves its protein substrates on the C-terminal side of asparagine residues. Converging lines of evidence indicate that AEP may be involved in the pathogenesis of several neurological diseases, including Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia. AEP is activated in the aging brain, cleaves amyloid precursor protein (APP) and promotes the production of amyloid-β (Aβ). We renamed AEP to δ-secretase to emphasize its role in APP fragmentation and Aβ production. AEP also cleaves other substrates, such as tau, α-synuclein, SET, and TAR DNA-binding protein 43, generating neurotoxic fragments and disturbing their physiological functions. The activity of δ-secretase is tightly regulated at both the transcriptional and posttranslational levels. Here, we review the recent advances in the role of δ-secretase in neurodegenerative diseases, with a focus on its biochemical properties and the transcriptional and posttranslational regulation of its activity, and discuss the clinical implications of δ-secretase as a diagnostic biomarker and therapeutic target for neurodegenerative diseases.

Journal ArticleDOI
TL;DR: A combination of two biomarkers of NDEs (Aβ 1–42 ) and SS-16 predicted the conversion of MCI to AD dementia more accurately in combination have critical implications for understanding the pathophysiology of AD dementia and for developing preventative treatments for cognitive decline.
Abstract: Progression of mild cognitive impairment (MCI) to Alzheimer’s disease (AD) dementia can be predicted by clinical features and a combination of biomarkers may increase the predictive power. In the present study, we investigated whether the combination of olfactory function and plasma neuronal-derived exosome (NDE) Aβ1–42 can best predict progression to AD dementia. 87 MCI patients were enrolled and received the cognitive assessment at 2-year and 3-year follow-up to reevaluate cognition. In the meanwhile, 80 healthy controls and 88 AD dementia patients were enrolled at baseline as well to evaluate the diagnose value in cross-section. Olfactory function was evaluated with the sniffin sticks (SS-16) and Aβ1–42 levels in NDEs were determined by ELISA. Logistic regression was performed to evaluate the risk factors for cognitive decline in MCI at 2-year and 3-year revisits. In the cross cohort, lower SS-16 scores and higher Aβ1–42 levels in NDEs were found in MCI and AD dementia compared to healthy controls. For the longitudinal set, 8 MCI individuals developed AD dementia within 2 years, and 16 MCI individuals developed AD dementia within 3 years. The two parameter-combination of SS-16 scores and Aβ1–42 level in NDEs showed better prediction in the conversion of MCI to AD dementia at 2-year and 3-year revisit. Moreover, after a 3-year follow-up, SS-16 scores also significantly predicted the conversion to AD dementia, where lower scores were associated with a 10-fold increased risk of developing AD dementia (p = 0.006). Similarly, higher Aβ1–42 levels in NDEs in patients with MCI increased the risk of developing AD dementia by 8.5-fold (p = 0.002). A combination of two biomarkers of NDEs (Aβ1–42) and SS-16 predicted the conversion of MCI to AD dementia more accurately in combination. These findings have critical implications for understanding the pathophysiology of AD dementia and for developing preventative treatments for cognitive decline.

Journal ArticleDOI
TL;DR: CSF t, o-α-syn and TNF-α are candidate risk biomarkers for the detection of PD at the prodromal stage and the dynamic interrelationships between CSF proteins are highlighted.
Abstract: Asymptomatic carriers of leucine-rich repeat kinase 2 (LRRK2) gene mutations constitute an ideal population for discovering prodromal biomarkers of Parkinson’s disease (PD). In this study, we aim to identify CSF candidate risk biomarkers of PD in individuals with LRRK2 mutation carriers. We measured the levels of CSF total- (t-), oligomeric (o-) and phosphorylated S129 (pS129-) α-syn, total-tau (tTau), phosphorylated threonine 181 tau (pTau), amyloid-beta 40 (Aβ-40), amyloid-beta-42 (Aβ-42) and 40 inflammatory chemokines in symptomatic (n = 23) and asymptomatic (n = 51) LRRK2 mutation carriers, subjects with a clinical diagnosis of PD (n = 60) and age-matched healthy controls (n = 34). General linear models corrected for age and gender were performed to assess differences in CSF biomarkers between the groups. Markers that varied significantly between the groups were then analyzed using backward-elimination logistic regression analysis to identify an ideal biomarkers panel of prodromal PD. Discriminant function analysis revealed low levels of CSF t-α-syn, high levels of CSF o-α-syn and TNF-α best discriminated asymptomatic LRRK2 mutation carriers from both symptomatic PD and healthy controls. Assessing the discriminative power using receiver operating curve analysis, an area under the curve > 0.80 was generated. The current study suggests that CSF t-, o-α-syn and TNF-α are candidate risk biomarkers for the detection of PD at the prodromal stage. Our findings also highlight the dynamic interrelationships between CSF proteins and the importance of using a biomarkers’ panel approach for an accurate and timely diagnosis of PD.

Journal ArticleDOI
TL;DR: This study has pointed to that RIN3 acts through Rab5 to impact endosomal trafficking and signaling in APP/PS1 mouse, and was rescued by the expression of a dominant negative Rab5 (Rab5 S34N ) construct.
Abstract: In Alzheimer’s Disease (AD), about one-third of the risk genes identified by GWAS encode proteins that function predominantly in the endocytic pathways. Among them, the Ras and Rab Interactor 3(RIN3) is a guanine nucleotide exchange factor (GEF) for the Rab5 small GTPase family and has been implicated to be a risk factor for both late onset AD (LOAD) and sporadic early onset AD (sEOAD). However, how RIN3 is linked to AD pathogenesis is currently undefined. Quantitative PCR and immunoblotting were used to measure the RIN3 expression level in mouse brain tissues and cultured basal forebrain cholinergic neuron (BFCNs). Immunostaining was used to define subcellular localization of RIN3 and to visualize endosomal changes in cultured primary BFCNs and PC12 cells. Recombinant flag-tagged RIN3 protein was purified from HEK293T cells and was used to define RIN3-interactomes by mass spectrometry. RIN3-interacting partners were validated by co-immunoprecipitation, immunofluorescence and yeast two hybrid assays. Live imaging of primary neurons was used to examine axonal transport of amyloid precursor protein (APP) and β-secretase 1 (BACE1). Immunoblotting was used to detect protein expression, processing of APP and phosphorylated forms of Tau. We have shown that RIN3 mRNA level was significantly increased in the hippocampus and cortex of APP/PS1 mouse brain. Basal forebrain cholinergic neurons (BFCNs) cultured from E18 APP/PS1 mouse embryos also showed increased RIN3 expression accompanied by early endosome enlargement. In addition, via its proline rich domain, RIN3 recruited BIN1(bridging integrator 1) and CD2AP (CD2 associated protein), two other AD risk factors, to early endosomes. Interestingly, overexpression of RIN3 or CD2AP promoted APP cleavage to increase its carboxyl terminal fragments (CTFs) in PC12 cells. Upregulation of RIN3 or the neuronal isoform of BIN1 increased phosphorylated Tau level. Therefore, upregulation of RIN3 expression promoted accumulation of APP CTFs and increased phosphorylated Tau. These effects by RIN3 was rescued by the expression of a dominant negative Rab5 (Rab5S34N) construct. Our study has thus pointed to that RIN3 acts through Rab5 to impact endosomal trafficking and signaling. RIN3 is significantly upregulated and correlated with endosomal dysfunction in APP/PS1 mouse. Through interacting with BIN1 and CD2AP, increased RIN3 expression alters axonal trafficking and procession of APP. Together with our previous studies, our current work has thus provided important insights into the role of RIN3 in regulating endosomal signaling and trafficking.

Journal ArticleDOI
TL;DR: The high brain uptake and uniform intrabrain distribution of RmAb158-scFv8D3 highlight the benefits of receptor-mediated transcytosis for antibody-based brain imaging and suggest that the alternative transport route of the bispecific antibody contributes to improved efficacy of brain-directed immunotherapy.
Abstract: Alzheimer’s disease (AD) immunotherapy with antibodies targeting amyloid-β (Aβ) has been extensively explored in clinical trials. The aim of this study was to study the long-term brain distribution of two radiolabeled monoclonal Aβ antibody variants – RmAb158, the recombinant murine version of BAN2401, which has recently demonstrated amyloid removal and reduced cognitive decline in AD patients, and the bispecific RmAb158-scFv8D3, which has been engineered for enhanced brain uptake via transferrin receptor-mediated transcytosis. A single intravenous injection of iodine-125 (125I)-labeled RmAb158-scFv8D3 or RmAb158 was administered to AD transgenic mice (tg-ArcSwe). In vivo single-photon emission computed tomography was used to investigate brain retention and intrabrain distribution of the antibodies over a period of 4 weeks. Activity in blood and brain tissue was measured ex vivo and autoradiography was performed in combination with Aβ and CD31 immunostaining to investigate the intrabrain distribution of the antibodies and their interactions with Aβ. Despite faster blood clearance, [125I]RmAb158-scFv8D3 displayed higher brain exposure than [125I]RmAb158 throughout the study. The brain distribution of [125I]RmAb158-scFv8D3 was more uniform and coincided with parenchymal Aβ pathology, while [125I]RmAb158 displayed a more scattered distribution pattern and accumulated in central parts of the brain at later times. Ex vivo autoradiography indicated greater vascular escape and parenchymal Aβ interactions for [125I]RmAb158-scFv8D3, whereas [125I]RmAb158 displayed retention and Aβ interactions in lateral ventricles. The high brain uptake and uniform intrabrain distribution of RmAb158-scFv8D3 highlight the benefits of receptor-mediated transcytosis for antibody-based brain imaging. Moreover, it suggests that the alternative transport route of the bispecific antibody contributes to improved efficacy of brain-directed immunotherapy.

Journal ArticleDOI
TL;DR: The studies provide the proof of principle that iPSCs-derived astrocytes can act as mitochondria donor to the injured DA neurons and attenuate pathology and provide a novel strategy that can be further developed for cellular therapy for PD.
Abstract: Parkinson’s disease (PD) is one of the neurodegeneration diseases characterized by the gradual loss of dopaminergic (DA) neurons in the substantia nigra region of the brain. Substantial evidence indicates that at the cellular level mitochondrial dysfunction is a key factor leading to pathological features such as neuronal death and accumulation of misfolded α-synuclein aggregations. Autologous transplantation of healthy purified mitochondria has shown to attenuate phenotypes in vitro and in vivo models of PD. However, there are significant technical difficulties in obtaining large amounts of purified mitochondria with normal function. In addition, the half-life of mitochondria varies between days to a few weeks. Thus, identifying a continuous source of healthy mitochondria via intercellular mitochondrial transfer is an attractive option for therapeutic purposes. In this study, we asked whether iPSCs derived astrocytes can serve as a donor to provide functional mitochondria and rescue injured DA neurons after rotenone exposure in an in vitro model of PD. We generated DA neurons and astrocytes from human iPSCs and hESCs. We established an astroglial-neuronal co-culture system to investigate the intercellular mitochondrial transfer, as well as the neuroprotective effect of mitochondrial transfer. We employed immunocytochemistry and FACS analysis to track mitochondria. We showed evidence that iPSCs-derived astrocytes or astrocytic conditioned media (ACM) can rescue DA neurons degeneration via intercellular mitochondrial transfer in a rotenone induced in vitro PD model. Specifically, we showed that iPSCs-derived astrocytes from health spontaneously release functional mitochondria into the media. Mito-Tracker Green tagged astrocytic mitochondria were detected in the ACM and were shown to be internalized by the injured neurons via a phospho-p38 depended pathway. Transferred mitochondria were able to significantly reverse DA neurodegeneration and axonal pruning following exposure to rotenone. When rotenone injured neurons were cultured in presence of ACM depleted of mitochondria (by ultrafiltration), the neuroprotective effects were abolished. Our studies provide the proof of principle that iPSCs-derived astrocytes can act as mitochondria donor to the injured DA neurons and attenuate pathology. Using iPSCs derived astrocytes as a donor can provide a novel strategy that can be further developed for cellular therapy for PD.

Journal ArticleDOI
TL;DR: It is found that PD patients have lower vitamin D levels than healthy controls and that the vitamin D concentrations are negatively correlated with PD risk and severity, but the FokI (C/T) polymorphism is significantly linked with PD.
Abstract: In recent years, many studies have investigated the correlations between Parkinson’s disease (PD) and vitamin D status, but the conclusion remains elusive. The present review focuses on the associations between PD and serum vitamin D levels by reviewing studies on the associations of PD with serum vitamin D levels and vitamin D receptor (VDR) gene polymorphisms from PubMed, Web of Science, Cochrane Library, and Embase databases. We found that PD patients have lower vitamin D levels than healthy controls and that the vitamin D concentrations are negatively correlated with PD risk and severity. Furthermore, higher vitamin D concentrations are linked to better cognitive function and mood in PD patients. Findings on the relationship between VDR gene polymorphisms and the risk of PD are inconsistent, but the FokI (C/T) polymorphism is significantly linked with PD. The occurrence of FokI (C/T) gene polymorphism may influence the risk, severity, and cognitive ability of PD patients, while also possibly influencing the effect of Vitamin D3 supplementation in PD patients. In view of the neuroprotective effects of vitamin D and the close association between vitamin D and dopaminergic neurotransmission, interventional prospective studies on vitamin D supplementation in PD patients should be conducted in the future.

Journal ArticleDOI
TL;DR: The current knowledge on the associations of mitochondria with TDP-43 and the role of autophagy in the clearance of abnormally aggregated TDP -43 and dysfunctional mitochondria is described and a novel approach for neurodegenerative treatment is discussed.
Abstract: Mitochondria are the energy center of cell operations and are involved in physiological functions and maintenance of metabolic balance and homeostasis in the body. Alterations of mitochondrial function are associated with a variety of degenerative and acute diseases. As mitochondria age in cells, they gradually become inefficient and potentially toxic. Acute injury can trigger the permeability of mitochondrial membranes, which can lead to apoptosis or necrosis. Transactive response DNA-binding protein 43 kDa (TDP-43) is a protein widely present in cells. It can bind to RNA, regulate a variety of RNA processes, and play a role in the formation of multi-protein/RNA complexes. Thus, the normal physiological functions of TDP-43 are particularly important for cell survival. Normal TDP-43 is located in various subcellular structures including mitochondria, mitochondrial-associated membrane, RNA particles and stress granules to regulate the endoplasmic reticulum–mitochondrial binding, mitochondrial protein translation, and mRNA transport and translation. Importantly, TDP-43 is associated with a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia and Alzheimer's disease, which are characterized by abnormal phosphorylation, ubiquitination, lysis or nuclear depletion of TDP-43 in neurons and glial cells. Although the pathogenesis of TDP-43 proteinopathy remains unknown, the presence of pathological TDP-43 inside or outside of mitochondria and the functional involvement of TDP-43 in the regulation of mitochondrial morphology, transport, and function suggest that mitochondria are associated with TDP-43-related diseases. Autophagy is a basic physiological process that maintains the homeostasis of cells, including targeted clearance of abnormally aggregated proteins and damaged organelles in the cytoplasm; therefore, it is considered protective against neurodegenerative diseases. However, the combination of abnormal TDP-43 aggregation, mitochondrial dysfunction, and insufficient autophagy can lead to a variety of aging-related pathologies. In this review, we describe the current knowledge on the associations of mitochondria with TDP-43 and the role of autophagy in the clearance of abnormally aggregated TDP-43 and dysfunctional mitochondria. Finally, we discuss a novel approach for neurodegenerative treatment based on the knowledge.

Journal ArticleDOI
TL;DR: Opicapone 50 mg was effective and generally well-tolerated in PD patients with motor fluctuations treated in clinical practice, and was judged by investigators as improved since commencing treatment.
Abstract: The efficacy and safety of opicapone, a once-daily catechol-O-methyltransferase inhibitor, have been established in two large randomized, placebo-controlled, multinational pivotal trials. Still, clinical evidence from routine practice is needed to complement the data from the pivotal trials. OPTIPARK (NCT02847442) was a prospective, open-label, single-arm trial conducted in Germany and the UK under clinical practice conditions. Patients with Parkinson’s disease and motor fluctuations were treated with opicapone 50 mg for 3 (Germany) or 6 (UK) months in addition to their current levodopa and other antiparkinsonian treatments. The primary endpoint was the Clinician’s Global Impression of Change (CGI-C) after 3 months. Secondary assessments included Patient Global Impressions of Change (PGI-C), the Unified Parkinson’s Disease Rating Scale (UPDRS), Parkinson’s Disease Questionnaire (PDQ-8), and the Non-Motor Symptoms Scale (NMSS). Safety assessments included evaluation of treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs). Of the 506 patients enrolled, 495 (97.8%) took at least one dose of opicapone. Of these, 393 (79.4%) patients completed 3 months of treatment. Overall, 71.3 and 76.9% of patients experienced any improvement on CGI-C and PGI-C after 3 months, respectively (full analysis set). At 6 months, for UK subgroup only (n = 95), 85.3% of patients were judged by investigators as improved since commencing treatment. UPDRS scores at 3 months showed statistically significant improvements in activities of daily living during OFF (mean ± SD change from baseline: − 3.0 ± 4.6, p < 0.0001) and motor scores during ON (− 4.6 ± 8.1, p < 0.0001). The mean ± SD improvements of − 3.4 ± 12.8 points for PDQ-8 and -6.8 ± 19.7 points for NMSS were statistically significant versus baseline (both p < 0.0001). Most of TEAEs (94.8% of events) were of mild or moderate intensity. TEAEs considered to be at least possibly related to opicapone were reported for 45.1% of patients, with dyskinesia (11.5%) and dry mouth (6.5%) being the most frequently reported. Serious TEAEs considered at least possibly related to opicapone were reported for 1.4% of patients. Opicapone 50 mg was effective and generally well-tolerated in PD patients with motor fluctuations treated in clinical practice. Registered in July 2016 at clinicaltrials.gov (NCT02847442).

Journal ArticleDOI
TL;DR: Current clinical trials targeting two enzymes, leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA), which are encoded by two most common PD risk genes are assessed.
Abstract: Parkinson’s disease (PD) is characterized by motor deficits and a wide variety of non-motor symptoms. The age of onset, rate of disease progression and the precise profile of motor and non-motor symptoms display considerable individual variation. Neuropathologically, the loss of substantia nigra dopaminergic neurons is a key feature of PD. The vast majority of PD patients exhibit alpha-synuclein aggregates in several brain regions, but there is also great variability in the neuropathology between individuals. While the dopamine replacement therapies can reduce motor symptoms, current therapies do not modify the disease progression. Numerous clinical trials using a wide variety of approaches have failed to achieve disease modification. It has been suggested that the heterogeneity of PD is a major contributing factor to the failure of disease modification trials, and that it is unlikely that a single treatment will be effective in all patients. Precision medicine, using drugs designed to target the pathophysiology in a manner that is specific to each individual with PD, has been suggested as a way forward. PD patients can be stratified according to whether they carry one of the risk variants associated with elevated PD risk. In this review we assess current clinical trials targeting two enzymes, leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA), which are encoded by two most common PD risk genes. Because the details of the pathogenic processes coupled to the different LRRK2 and GBA risk variants are not fully understood, we ask if these precision medicine-based intervention strategies will prove “precise” or “personalized” enough to modify the disease process in PD patients. We also consider at what phases of the disease that such strategies might be effective, in light of the genes being primarily associated with the risk of developing disease in the first place, and less clearly linked to the rate of disease progression. Finally, we critically evaluate the notion that therapies targeting LRRK2 and GBA might be relevant to a wider segment of PD patients, beyond those that actually carry risk variants of these genes.

Journal ArticleDOI
TL;DR: Modules of tightly regulated lipids and proteins, drivers in lipid homeostasis and innate immunity, are strongly associated with AD phenotypes.
Abstract: There is an urgent need to understand the pathways and processes underlying Alzheimer’s disease (AD) for early diagnosis and development of effective treatments. This study was aimed to investigate Alzheimer’s dementia using an unsupervised lipid, protein and gene multi-omics integrative approach. A lipidomics dataset comprising 185 AD patients, 40 mild cognitive impairment (MCI) individuals and 185 controls, and two proteomics datasets (295 AD, 159 MCI and 197 controls) were used for weighted gene co-expression network analyses (WGCNA). Correlations of modules created within each modality with clinical AD diagnosis, brain atrophy measures and disease progression, as well as their correlations with each other, were analyzed. Gene ontology enrichment analysis was employed to examine the biological processes and molecular and cellular functions of protein modules associated with AD phenotypes. Lipid species were annotated in the lipid modules associated with AD phenotypes. The associations between established AD risk loci and the lipid/protein modules that showed high correlation with AD phenotypes were also explored. Five of the 20 identified lipid modules and five of the 17 identified protein modules were correlated with clinical AD diagnosis, brain atrophy measures and disease progression. The lipid modules comprising phospholipids, triglycerides, sphingolipids and cholesterol esters were correlated with AD risk loci involved in immune response and lipid metabolism. The five protein modules involved in positive regulation of cytokine production, neutrophil-mediated immunity, and humoral immune responses were correlated with AD risk loci involved in immune and complement systems and in lipid metabolism (the APOE e4 genotype). Modules of tightly regulated lipids and proteins, drivers in lipid homeostasis and innate immunity, are strongly associated with AD phenotypes.

Journal ArticleDOI
TL;DR: A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Abstract: In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets

Journal ArticleDOI
TL;DR: The analysis shows patterns of separation between unaffected individuals and FTD patients, especially for those with a clinical diagnosis of bvFTD, and has the potential to enable future clinical utilization of these potential biomarkers within FTD.
Abstract: The clinical presentations of frontotemporal dementia (FTD) are diverse and overlap with other neurological disorders. There are, as of today, no biomarkers in clinical practice for diagnosing the disorders. Here, we aimed to find protein markers in cerebrospinal fluid (CSF) from patients with FTD, presymptomatic mutation carriers and non-carriers. Antibody suspension bead arrays were used to analyse 328 proteins in CSF from patients with behavioural variant FTD (bvFTD, n = 16) and progressive primary aphasia (PPA, n = 13), as well as presymptomatic mutation carriers (PMC, n = 16) and non-carriers (NC, n = 8). A total of 492 antibodies were used to measure protein levels by direct labelling of the CSF samples. The findings were further examined in an independent cohort including 13 FTD patients, 79 patients with Alzheimer’s disease and 18 healthy controls. We found significantly altered protein levels in CSF from FTD patients compared to unaffected individuals (PMC and NC) for 26 proteins. The analysis show patterns of separation between unaffected individuals and FTD patients, especially for those with a clinical diagnosis of bvFTD. The most statistically significant differences in protein levels were found for VGF, TN-R, NPTXR, TMEM132D, PDYN and NF-M. Patients with FTD were found to have higher levels of TN-R and NF-M, and lower levels of VGF, NPTXR, TMEM132D and PDYN, compared to unaffected individuals. The main findings were reproduced in the independent cohort. In this pilot study, we show a separation of FTD patients from unaffected individuals based on protein levels in CSF. Further investigation is required to explore the CSF profiles in larger cohorts, but the results presented here has the potential to enable future clinical utilization of these potential biomarkers within FTD.

Journal ArticleDOI
TL;DR: PD03 and Anle138b can selectively target oligomeric α-synuclein, resulting in attenuation of neurodegeneration in the PLP-α-syn mice, and both approaches are potential therapies that should be developed further for disease modification in α- synucleinopathies.
Abstract: Misfolded oligomeric α-synuclein plays a pivotal role in the pathogenesis of α-synucleinopathies including Parkinson’s disease and multiple system atrophy, and its detection parallels activation of microglia and a loss of neurons in the substantia nigra pars compacta. Here we aimed to analyze the therapeutic efficacy of PD03, a new AFFITOPE® immunotherapy approach, either alone or in combination with Anle138b, in a PLP-α-syn mouse model. The PLP-α-syn mice were treated with PD03 immunotherapy, Anle138b, or a combination of two. Five months after study initiation, the mice underwent behavioral testing and were sacrificed for neuropathological analysis. The treatment groups were compared to the vehicle group with regard to motor performance, nigral neuronal loss, microglial activation and α-synuclein pathology. The PLP-α-syn mice receiving the PD03 or Anle138b single therapy showed improvement of gait deficits and preservation of nigral dopaminergic neurons associated with the reduced α-synuclein oligomer levels and decreased microglial activation. The combined therapy with Anle138b and PD03 resulted in lower IgG binding in the brain as compared to the single immunotherapy with PD03. PD03 and Anle138b can selectively target oligomeric α-synuclein, resulting in attenuation of neurodegeneration in the PLP-α-syn mice. Both approaches are potential therapies that should be developed further for disease modification in α-synucleinopathies.

Journal ArticleDOI
TL;DR: An overview of the ability of CCM to detect nerve damage associated with PD is provided and reduced CNFD is associated with decreased intraepidermal nerve fiber density in PD.
Abstract: Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disease affecting about 2–3% of population above the age of 65. In recent years, Parkinson’s research has mainly focused on motor and non-motor symptoms while there are limited studies on neurodegeneration which is associated with balance problems and increased incidence of falls. Corneal confocal microscopy (CCM) is a real-time, non-invasive, in vivo ophthalmic imaging technique for quantifying nerve damage in peripheral neuropathies and central neurodegenerative disorders. CCM has shown significantly lower corneal nerve fiber density (CNFD) in patients with PD compared to healthy controls. Reduced CNFD is associated with decreased intraepidermal nerve fiber density in PD. This review provides an overview of the ability of CCM to detect nerve damage associated with PD.

Journal ArticleDOI
TL;DR: The biogenesis and functions ofcircRNAs and the research progress on circRNAs in AD are discussed to advance the understanding of how circRN as contribute to this neurological disorder.
Abstract: Circular RNAs (circRNAs) are a type of covalently closed, single-stranded circular noncoding RNA that can affect the expression of many protein-coding genes. Growing evidence has shown that circRNAs play critical roles in Alzheimer’s disease (AD) and may have therapeutic potentials for this disease. CircRNAs play regulatory roles in neural functions and neurological disorders through diverse mechanisms, including acting as microRNA sponges or interacting with proteins to regulate selective splicing or transcription, as well as through epigenetic modification. In this review, we discuss the biogenesis and functions of circRNAs and the research progress on circRNAs in AD to advance the understanding of how circRNAs contribute to this neurological disorder.