scispace - formally typeset
Open AccessJournal ArticleDOI

5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View

Reads0
Chats0
TLDR
In this paper, the authors study the potential advantages of allowing for non-orthogonal sharing of RAN resources in uplink communications from a set of eMBB, mMTC, and URLLC devices to a common base station.
Abstract
The grand objective of 5G wireless technology is to support three generic services with vastly heterogeneous requirements: enhanced mobile broadband (eMBB), massive machine-type communications (mMTCs), and ultra-reliable low-latency communications (URLLCs). Service heterogeneity can be accommodated by network slicing, through which each service is allocated resources to provide performance guarantees and isolation from the other services. Slicing of the radio access network (RAN) is typically done by means of orthogonal resource allocation among the services. This paper studies the potential advantages of allowing for non-orthogonal sharing of RAN resources in uplink communications from a set of eMBB, mMTC, and URLLC devices to a common base station. The approach is referred to as heterogeneous non-orthogonal multiple access (H-NOMA), in contrast to the conventional NOMA techniques that involve users with homogeneous requirements and hence can be investigated through a standard multiple access channel. The study devises a communication-theoretic model that accounts for the heterogeneous requirements and characteristics of the three services. The concept of reliability diversity is introduced as a design principle that leverages the different reliability requirements across the services in order to ensure performance guarantees with non-orthogonal RAN slicing. This paper reveals that H-NOMA can lead, in some regimes, to significant gains in terms of performance tradeoffs among the three generic services as compared to orthogonal slicing.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come

TL;DR: This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment.
Journal ArticleDOI

Wireless Network Intelligence at the Edge

TL;DR: In this article, the key building blocks of edge ML, different neural network architectural splits and their inherent tradeoffs, as well as theoretical and technical enablers stemming from a wide range of mathematical disciplines are presented.
Posted Content

Wireless Network Intelligence at the Edge

TL;DR: In a first of its kind, this article explores the key building blocks of edge ML, different neural network architectural splits and their inherent tradeoffs, as well as theoretical and technical enablers stemming from a wide range of mathematical disciplines.
Journal ArticleDOI

Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research

TL;DR: In this paper, the authors provide a comprehensive survey of the current developments towards 6G and elaborate the requirements that are necessary to realize the 6G applications, and summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions toward 6G.
Journal ArticleDOI

Computation Offloading Toward Edge Computing

TL;DR: This paper reviews the state-of-the-art research on computation offloading in terms of application partitioning, task allocation, resource management, and distributed execution, with highlighting features for edge computing.
References
More filters
Journal ArticleDOI

Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends

TL;DR: The concept of software defined multiple access (SoDeMA) is proposed, which enables adaptive configuration of available multiple access schemes to support diverse services and applications in future 5G networks.
Journal ArticleDOI

Toward Massive, Ultrareliable, and Low-Latency Wireless Communication With Short Packets

TL;DR: In this article, the authors review recent advances in information theory, which provide the theoretical principles that govern the transmission of short packets, and then apply these principles to three exemplary scenarios (the two-way channel, the downlink broadcast channel, and the uplink random access channel), thereby illustrating how the transmissions of control information can be optimized when the packets are short.
Journal ArticleDOI

Optimum power control over fading channels

TL;DR: From the single-user point of view considered in this paper, there exists an optimal repetition diversity order (or spreading factor) that minimizes the information outage probability for given rate, power, and fading statistics.
Journal ArticleDOI

Network Slicing Based 5G and Future Mobile Networks: Mobility, Resource Management, and Challenges

TL;DR: In this article, a logical architecture for network-slicing-based 5G systems is introduced, and a scheme for managing mobility between different access networks, as well as a joint power and subchannel allocation scheme in spectrum sharing two-tier systems based on network slicing, where both the co-tier interference and crosstier interference are taken into account.
Proceedings ArticleDOI

Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless Networks

TL;DR: In this article, a joint eMBB and ultra-low-latency (URLLC) scheduler is proposed to maximize the utility for eMBBs while satisfying instantaneous URLLC demands.
Related Papers (5)