scispace - formally typeset
Journal ArticleDOI

90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier

TLDR
A compact 20 Hz repetition-rate mid-IR OPCPA system operating at a central wavelength of 3900 nm with the tail-to-tail spectrum extending over 600 nm and delivering 8 mJ pulses that are compressed to 83 fs opens a range of unprecedented opportunities for tabletop ultrafast science.
Abstract
We demonstrate a compact 20 Hz repetition-rate mid-IR OPCPA system operating at a central wavelength of 3900 nm with the tail-to-tail spectrum extending over 600 nm and delivering 8 mJ pulses that are compressed to 83 fs (<7 optical cycles). Because of the long optical period (∼13 fs) and a high peak power, the system opens a range of unprecedented opportunities for tabletop ultrafast science and is particularly attractive as a driver for a highly efficient generation of ultrafast coherent x-ray continua for biomolecular and element specific imaging.

read more

Citations
More filters
Journal ArticleDOI

Long-wavelength-infrared laser filamentation in solids in the near-single-cycle regime.

TL;DR: The experimental results quantitatively agree well with the numerical simulation based on the unidirectional pulse propagation equation and shows the experimental feasibility of high-energy, near-single-cycle LWIR light bullet generation in solids.
Proceedings ArticleDOI

Gigawatt mid-IR (4-5 μm) femtosecond hybrid Fe2+:ZnSe laser system

TL;DR: In this paper, the authors demonstrate an efficient chirped pulse amplification of broadband mid-IR (4-5 μm) femtosecond seed pulse (230 ps, 4μJ) generated in AgGaS2 based OPA driven by Cr:forsterite laser in multi-pass Fe2+:ZnSe amplifier optically pumped by solid-state Q-switched Cr:Yb:Ho:YSGG laser (2.85 μm, 30mJ, 5Hz, 0.6 J/cm2).
Journal ArticleDOI

High-Power Solid-State Near- and Mid-IR Ultrafast Laser Sources for Strong-Field Science

TL;DR: In this article , the authors highlight the development of ultrafast sources in the near and middle-IR range, developed in the laboratory of Nonlinear Optics and Superstrong Laser Fields at Lomonosov Moscow State University.
Journal ArticleDOI

Modeling high-peak-power few-cycle field waveform generation by optical parametric amplification in the long-wavelength infrared.

TL;DR: Broadband OPCPA in suitable nonlinear crystals pumped at around 2 μm and seeded either through the signal or the idler input is shown to enable the generation of high-power field waveforms with pulse widths shorter than two field cycles within the entire LWIR range.
References
More filters
Journal ArticleDOI

The attosecond nonlinear optics of bright coherent X-ray generation

TL;DR: In this paper, the Roentgen X-ray tube was used for high-order harmonic generation with small-scale femtosecond laser technology, which combines the microscopic attosecond science of atoms driven by intense laser fields with the macroscopic extreme nonlinear optics of phase matching.
Journal ArticleDOI

Infrared Two-Color Multicycle Laser Field Synthesis for Generating an Intense Attosecond Pulse

TL;DR: The proposed method enables the requirements for the pump pulse duration to be relaxed but also to reduce ionization of the harmonic medium, which opens the door to create an intense isolated attosecond pulse using a conventional femtosecond laser system.
Journal ArticleDOI

Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz

TL;DR: A novel mid-IR source based on optical parametric chirped pulse amplification (OPCPA) generating 96 fs pulses (9.0 cycles) at 3.2 mm with an energy of 1.2 microJ, at a repetition rate of 100 kHz is presented.
Journal ArticleDOI

Self-compression of millijoule 1.5 microm pulses.

TL;DR: In this article, the authors demonstrate a four-stage optical parametric chirped-pulse amplification system that delivers carrier-envelope phase-stable approximately 1.5 microm pulses with energies up to 12.5 mJ before recompression.
Journal ArticleDOI

Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver.

TL;DR: Results indicate the possibility to produce bright attosecond pulses approaching the soft X spectral region and contribute to significantly extending the harmonic emission to higher photon energies, whereas the VIS pulse improves the conversion efficiency of the process.
Related Papers (5)