scispace - formally typeset
Journal ArticleDOI

90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier

Reads0
Chats0
TLDR
A compact 20 Hz repetition-rate mid-IR OPCPA system operating at a central wavelength of 3900 nm with the tail-to-tail spectrum extending over 600 nm and delivering 8 mJ pulses that are compressed to 83 fs opens a range of unprecedented opportunities for tabletop ultrafast science.
Abstract
We demonstrate a compact 20 Hz repetition-rate mid-IR OPCPA system operating at a central wavelength of 3900 nm with the tail-to-tail spectrum extending over 600 nm and delivering 8 mJ pulses that are compressed to 83 fs (<7 optical cycles). Because of the long optical period (∼13 fs) and a high peak power, the system opens a range of unprecedented opportunities for tabletop ultrafast science and is particularly attractive as a driver for a highly efficient generation of ultrafast coherent x-ray continua for biomolecular and element specific imaging.

read more

Citations
More filters
Journal ArticleDOI

The X-Ray Emission Effectiveness of Plasma Mirrors: Reexamining Power-Law Scaling for Relativistic High-Order Harmonic Generation

TL;DR: The numerical results support the ω −4/3 scaling of the synchrotron emission model as a limiting efficiency of the process under most conditions, and suggest that with a 20-PW 800-nm driving laser, 1 TW/harmonic can be produced for 1-keV photons.
Journal ArticleDOI

Generation of octave-spanning mid-infrared pulses from cascaded second-order nonlinear processes in a single crystal

TL;DR: Experimental generation of a 6.8 μJ laser pulse spanning from 1.8 to 4.2 μm from cascaded second-order nonlinear processes in a 0.4-mm BiB3O6 (BIBO) crystal, which can extend wavelengths further into mid-infrared pulses.
Journal ArticleDOI

Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases.

TL;DR: A prototype scheme for highly selective detection of air molecules by backward stimulated Raman scattering by combining tunable broadband pulse generation with the technique of nonlinear spectral compression is demonstrated.
Journal ArticleDOI

Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser

TL;DR: In this paper, the authors demonstrate a first-of-its-kind efficient amplification of a broadband tunable (from 3.8 to 4.8 µm) femtosecond seed pulse generated from a AgGaS2-based optical parametric amplifier pumped by a Cr:forsterite laser in a multi-pass Fe2+:ZnSe amplifier optically pumped by the solid-state nanosecond Cr:Yb:Ho:YSGG laser.
Journal ArticleDOI

Giantically blue-shifted visible light in femtosecond mid-IR filament in fluorides

TL;DR: It is shown that the formation of this narrow visible wing is a result of the interference of the supercontinuum components in the anomalous group velocity dispersion regime.
References
More filters
Journal ArticleDOI

The attosecond nonlinear optics of bright coherent X-ray generation

TL;DR: In this paper, the Roentgen X-ray tube was used for high-order harmonic generation with small-scale femtosecond laser technology, which combines the microscopic attosecond science of atoms driven by intense laser fields with the macroscopic extreme nonlinear optics of phase matching.
Journal ArticleDOI

Infrared Two-Color Multicycle Laser Field Synthesis for Generating an Intense Attosecond Pulse

TL;DR: The proposed method enables the requirements for the pump pulse duration to be relaxed but also to reduce ionization of the harmonic medium, which opens the door to create an intense isolated attosecond pulse using a conventional femtosecond laser system.
Journal ArticleDOI

Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz

TL;DR: A novel mid-IR source based on optical parametric chirped pulse amplification (OPCPA) generating 96 fs pulses (9.0 cycles) at 3.2 mm with an energy of 1.2 microJ, at a repetition rate of 100 kHz is presented.
Journal ArticleDOI

Self-compression of millijoule 1.5 microm pulses.

TL;DR: In this article, the authors demonstrate a four-stage optical parametric chirped-pulse amplification system that delivers carrier-envelope phase-stable approximately 1.5 microm pulses with energies up to 12.5 mJ before recompression.
Journal ArticleDOI

Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver.

TL;DR: Results indicate the possibility to produce bright attosecond pulses approaching the soft X spectral region and contribute to significantly extending the harmonic emission to higher photon energies, whereas the VIS pulse improves the conversion efficiency of the process.
Related Papers (5)