scispace - formally typeset
Journal ArticleDOI

A low-power low-noise CMOS amplifier for neural recording applications

R.R. Harrison, +1 more
- 05 Jun 2003 - 
- Vol. 38, Iss: 6, pp 958-965
Reads0
Chats0
TLDR
In this article, a low-noise low-power biosignal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range while rejecting large dc offsets generated at the electrode-tissue interface is presented.
Abstract
There is a need among scientists and clinicians for low-noise low-power biosignal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range while rejecting large dc offsets generated at the electrode-tissue interface. The advent of fully implantable multielectrode arrays has created the need for fully integrated micropower amplifiers. We designed and tested a novel bioamplifier that uses a MOS-bipolar pseudoresistor element to amplify low-frequency signals down to the millihertz range while rejecting large dc offsets. We derive the theoretical noise-power tradeoff limit - the noise efficiency factor - for this amplifier and demonstrate that our VLSI implementation approaches this limit by selectively operating MOS transistors in either weak or strong inversion. The resulting amplifier, built in a standard 1.5-/spl mu/m CMOS process, passes signals from 0.025Hz to 7.2 kHz with an input-referred noise of 2.2 /spl mu/Vrms and a power dissipation of 80 /spl mu/W while consuming 0.16 mm/sup 2/ of chip area. Our design technique was also used to develop an electroencephalogram amplifier having a bandwidth of 30 Hz and a power dissipation of 0.9 /spl mu/W while maintaining a similar noise-power tradeoff.

read more

Citations
More filters
Journal ArticleDOI

A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System

TL;DR: A prototype integrated circuit for wireless neural recording from a 100-channel microelectrode array was developed and a two-chip system was used to record neural signals from a Utah Electrode Array in cat cortex and transmit the digitized signals wirelessly to a receiver.
Patent

System and method for waking an implantable medical device from a sleep state

TL;DR: In this article, a system and method for waking up a satellite implantable medical device ('IMD') from a sleep state in which power consumption by the satellite IMD is essentially zero.
Proceedings ArticleDOI

A low-power, low-noise CMOS amplifier for neural recording applications

TL;DR: A novel bioamplifier that uses a MOS-bipolar pseudo-resistor to amplify signals down to the mHz range while rejecting large dc offsets and it is demonstrated that the VLSI implementation approaches the theoretical noise-power tradeoff limit.
Journal ArticleDOI

An Energy-Efficient Micropower Neural Recording Amplifier

TL;DR: The amplifier appears to be the lowest power and most energy-efficient neural recording amplifier reported to date and the low-noise design techniques that help the neural amplifier achieve input-referred noise that is near the theoretical limit of any amplifier using a differential pair as an input stage.
Journal ArticleDOI

A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials

TL;DR: The monolithic architect and micropower low-noise low-supply operation could help enable applications ranging from neuroprosthetics to seizure monitors that require a small form factor and battery operation.
References
More filters
Journal Article

The design of CMOS radio-frequency integrated circuits, 2nd edition

TL;DR: This expanded and thoroughly revised edition of Thomas H. Lee's acclaimed guide to the design of gigahertz RF integrated circuits features a completely new chapter on the principles of wireless systems.
Book

Operation and modeling of the MOS transistor

TL;DR: In this article, the MOS transistors with ION-IMPLANTED CHANNELS were used for CIRCUIT SIMULATION in a two-and three-tier MOS structure.
Book

Analog Integrated Circuit Design

TL;DR: In this paper, the authors present an overview of current mirror and Opamp design and compensation for single-stage Amplifiers and Current Mirrors, as well as a comparison of the two types of Opamps.
Book

The Design of CMOS Radio-Frequency Integrated Circuits

TL;DR: In this article, the authors present an expanded and thoroughly revised edition of Tom Lee's acclaimed guide to the design of gigahertz RF integrated circuits, which is packed with physical insights and design tips, and includes a historical overview of the field in context.
Book

Analog VLSI and Neural Systems

TL;DR: This chapter discusses a simple circuit that can generate a sinusoidal response and calls this circuit the second-order section, which can be used to generate any response that can be represented by two poles in the complex plane, where the two poles have both real and imaginary parts.
Related Papers (5)