scispace - formally typeset
Journal ArticleDOI

A Novel High-Energy Hybrid Supercapacitor with an Anatase TiO2–Reduced Graphene Oxide Anode and an Activated Carbon Cathode

TLDR
In this article, a hybrid supercapacitor with high energy and power densities is presented, which comprises a composite anode of anatase TiO2 and reduced graphene oxide and an activated carbon cathode in a non-aqueous electrolyte.
Abstract
A hybrid supercapacitor with high energy and power densities is reported. It comprises a composite anode of anatase TiO2 and reduced graphene oxide and an activated carbon cathode in a non-aqueous electrolyte. While intercalation compounds can provide high energy typically at the expense of power, the anatase TiO2 nanoparticles are able to sustain both high energy and power in the hybrid supercapacitor. At a voltage range from 1.0 to 3.0 V, 42 W h kg−1 of energy is achieved at 800 W kg−1. Even at a 4-s charge/discharge rate, an energy density as high as 8.9 W h kg−1 can be retained. The high energy and power of this hybrid supercapacitor bridges the gap between conventional batteries with high energy and low power and supercapacitors with high power and low energy.

read more

Citations
More filters
Journal ArticleDOI

Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects.

TL;DR: The fundamental scientific principle, structure, and possible classification of Battery‐supercapacitor hybrid device (BSH) are addressed, and the recent advances on various existing and emerging BSHs are reviewed, with the focus on materials and electrochemical performances.
Journal ArticleDOI

Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities

TL;DR: A critical review of the factors influencing the volumetric performance of carbon materials from a structural design point of view and an in-depth summary of various promising approaches used to make significant research breakthroughs in recent years.

High-Power Lithium Batteries from Functionalized Carbon Nanotube Electrodes

TL;DR: Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes, which had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 timesHigher than conventional lithium-ion batteries.
Journal ArticleDOI

Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors

TL;DR: In this paper, a hybrid sodium ion capacitor with the active materials in both the anode and the cathode being derived entirely from a single precursor: peanut shells, which are a green and highly economical waste globally generated at over 6 million tons per year.
Journal ArticleDOI

Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors

TL;DR: The material design strategies in Li-ion and Na-ion capacitors are summarized, with a focus on pseudocapacitive oxide anodes (Nb2 O5 , MoO3 , etc.), which provide a new opportunity to obtain a higher power density of the hybrid devices.
References
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries

TL;DR: It is reported that electrodes made of nanoparticles of transition-metal oxides (MO), where M is Co, Ni, Cu or Fe, demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates.
Journal ArticleDOI

Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors

TL;DR: It is shown that the capacitive charge-storage properties of mesoporous films of iso-oriented alpha-MoO(3) are superior to those of either Mesoporous amorphous material or non-porous crystalline MoO( 3).
Journal ArticleDOI

Carbon Materials for Chemical Capacitive Energy Storage

TL;DR: In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-Capacitance have been explored and show not only enhanced capacitance, but as well good cyclability.
Related Papers (5)