scispace - formally typeset
Journal ArticleDOI

Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors

Reads0
Chats0
TLDR
In this paper, a hybrid sodium ion capacitor with the active materials in both the anode and the cathode being derived entirely from a single precursor: peanut shells, which are a green and highly economical waste globally generated at over 6 million tons per year.
Abstract
This is the first report of a hybrid sodium ion capacitor (NIC) with the active materials in both the anode and the cathode being derived entirely from a single precursor: peanut shells, which are a green and highly economical waste globally generated at over 6 million tons per year. The electrodes push the envelope of performance, delivering among the most promising sodiation capacity–rate capability–cycling retention combinations reported in the literature for each materials class. Hence the resultant NIC also offers a state-of-the-art cyclically stable combination of energy and power, not only in respect to previously but also as compared to Li ion capacitors (LICs). The ion adsorption cathode based on Peanut Shell Nanosheet Carbon (PSNC) displays a hierarchically porous architecture, a sheet-like morphology down to 15 nm in thickness, a surface area on par with graphene materials (up to 2396 m2 g−1) and high levels of oxygen doping (up to 13.51 wt%). Scanned from 1.5–4.2 V vs. Na/Na+ PSNC delivers a specific capacity of 161 mA h g−1 at 0.1 A g−1 and 73 mA h g−1 at 25.6 A g−1. A low surface area Peanut Shell Ordered Carbon (PSOC) is employed as an ion intercalation anode. PSOC delivers a total capacity of 315 mA h g−1 with a flat plateau of 181 mA h g−1 occurring below 0.1 V (tested at 0.1 A g−1), and is stable at 10 000 cycles (tested at 3.2 A g−1). The assembled NIC operates within a wide temperature range (0–65 °C), yielding at room temperature (by active mass) 201, 76 and 50 W h kg−1 at 285, 8500 and 16 500 W kg−1, respectively. At 1.5–3.5 V, the hybrid device achieved 72% capacity retention after 10 000 cycles tested at 6.4 A g−1, and 88% after 100 000 cycles at 51.2 A g−1.

read more

Citations
More filters
Journal ArticleDOI

Latest advances in supercapacitors: from new electrode materials to novel device designs.

TL;DR: The state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors is summarized and key technical challenges are highlighted regarding further research in this thriving field.
Journal ArticleDOI

Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects.

TL;DR: The fundamental scientific principle, structure, and possible classification of Battery‐supercapacitor hybrid device (BSH) are addressed, and the recent advances on various existing and emerging BSHs are reviewed, with the focus on materials and electrochemical performances.
Journal ArticleDOI

Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine

TL;DR: Recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed and could stimulate researchers to synthesize new advanced hierarchically porous solids.

High-Power Lithium Batteries from Functionalized Carbon Nanotube Electrodes

TL;DR: Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes, which had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 timesHigher than conventional lithium-ion batteries.
Journal ArticleDOI

Hierarchically porous materials: synthesis strategies and structure design

TL;DR: This review addresses recent advances made in studies of hierarchically porous materials and methods to control their structure and morphology and hopes that this review will be helpful for those entering the field and also for those in the field who want quick access to helpful reference information.
References
More filters
Journal ArticleDOI

A review of electrode materials for electrochemical supercapacitors

TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Journal ArticleDOI

Carbon-based Supercapacitors Produced by Activation of Graphene

TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Journal ArticleDOI

Where Do Batteries End and Supercapacitors Begin

TL;DR: Electrochemical measurements can distinguish between different types of energy storage materials and their underlying mechanisms, used to recover power in cars and electric mass transit vehicles that would otherwise lose braking energy as heat.
Journal ArticleDOI

Sodium‐Ion Batteries

TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Journal ArticleDOI

High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance

TL;DR: This work quantifies the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates.
Related Papers (5)