scispace - formally typeset
Open AccessJournal Article

A quantum Newton's cradle

Reads0
Chats0
TLDR
In this paper, the authors show that a homogeneous 1D Bose gas with point-like collisional interactions is integrable, and that it is possible to construct a system with many degrees of freedom that does not reach thermal equilibrium even after thousands of collisions.
Abstract
It is a fundamental assumption of statistical mechanics that a closed system with many degrees of freedom ergodically samples all equal energy points in phase space. To understand the limits of this assumption, it is important to find and study systems that are not ergodic, and thus do not reach thermal equilibrium. A few complex systems have been proposed that are expected not to thermalize because their dynamics are integrable. Some nearly integrable systems of many particles have been studied numerically, and shown not to ergodically sample phase space. However, there has been no experimental demonstration of such a system with many degrees of freedom that does not approach thermal equilibrium. Here we report the preparation of out-of-equilibrium arrays of trapped one-dimensional (1D) Bose gases, each containing from 40 to 250 87Rb atoms, which do not noticeably equilibrate even after thousands of collisions. Our results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like collisional interactions is integrable. Until now, however, the time evolution of out-of-equilibrium 1D Bose gases has been a theoretically unsettled issue, as practical factors such as harmonic trapping and imperfectly point-like interactions may compromise integrability. The absence of damping in 1D Bose gases may lead to potential applications in force sensing and atom interferometry.

read more

Citations
More filters
Journal ArticleDOI

Many-Body Physics with Ultracold Gases

TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Journal ArticleDOI

Thermalization and its mechanism for generic isolated quantum systems

TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Journal ArticleDOI

Colloquium: Nonequilibrium dynamics of closed interacting quantum systems

TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Journal ArticleDOI

Observation of many-body localization of interacting fermions in a quasirandom optical lattice

TL;DR: This experiment experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave.
Journal ArticleDOI

Quantum many-body systems out of equilibrium

TL;DR: In this article, the authors provide an overview of the progress in probing dynamical equilibration and thermalization of closed quantum many-body systems driven out of equilibrium by quenches, ramps and periodic driving.
References
More filters
Journal ArticleDOI

Local emergence of thermal correlations in an isolated quantum many-body system

TL;DR: The relaxation mechanisms of isolated quantum many-body systems are insufficiently understood, but a one-dimensional quantum gas experiment uncovers the local emergence of thermal correlations and their cone-like propagation through the system as discussed by the authors.
Journal ArticleDOI

Programmable quantum simulations of spin systems with trapped ions

TL;DR: Monroe et al. as discussed by the authors used a laser-cooled and trapped atomic ions for the simulation of interacting quantum spin models, where effective spins are represented by appropriate internal energy levels within each ion, and the spins can be measured with near-perfect efficiency using state-dependent fluorescence techniques.
Journal ArticleDOI

Rotation sensing with a dual atom-interferometer Sagnac gyroscope

TL;DR: In this article, the Sagnac effect was applied to the SAGA-effect interferometer gyroscope with a short-term rotation-rate sensitivity of 6×10−10 rad s−1 over 1 s integration.
Journal ArticleDOI

Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas

TL;DR: In this paper, a blue detuned laser beam was used to move a Bose-Einstein condensed gas at different velocities to study dissipation in the BEC.
Journal ArticleDOI

One-dimensional quantum liquids: Beyond the Luttinger liquid paradigm

TL;DR: In this article, the Luttinger liquid theory has been used for the description of one-dimensional (1D) quantum fluids beyond the low-energy limit, where the nonlinearity of the dispersion relation becomes essential.