scispace - formally typeset
Open AccessJournal Article

A quantum Newton's cradle

Reads0
Chats0
TLDR
In this paper, the authors show that a homogeneous 1D Bose gas with point-like collisional interactions is integrable, and that it is possible to construct a system with many degrees of freedom that does not reach thermal equilibrium even after thousands of collisions.
Abstract
It is a fundamental assumption of statistical mechanics that a closed system with many degrees of freedom ergodically samples all equal energy points in phase space. To understand the limits of this assumption, it is important to find and study systems that are not ergodic, and thus do not reach thermal equilibrium. A few complex systems have been proposed that are expected not to thermalize because their dynamics are integrable. Some nearly integrable systems of many particles have been studied numerically, and shown not to ergodically sample phase space. However, there has been no experimental demonstration of such a system with many degrees of freedom that does not approach thermal equilibrium. Here we report the preparation of out-of-equilibrium arrays of trapped one-dimensional (1D) Bose gases, each containing from 40 to 250 87Rb atoms, which do not noticeably equilibrate even after thousands of collisions. Our results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like collisional interactions is integrable. Until now, however, the time evolution of out-of-equilibrium 1D Bose gases has been a theoretically unsettled issue, as practical factors such as harmonic trapping and imperfectly point-like interactions may compromise integrability. The absence of damping in 1D Bose gases may lead to potential applications in force sensing and atom interferometry.

read more

Citations
More filters
Journal ArticleDOI

Quantum Quenches in Isolated Quantum Glasses out of Equilibrium

TL;DR: Investigating the quench dynamics of the isolated quantum spherical p-spin model, a paradigmatic model of a mean-field glass, finds evidence that increasing the strength of either the interactions or the quantum fluctuations can act to lower the effective temperature of theisol system and stabilize glassy behavior.
Journal ArticleDOI

Large-scale thermalization, prethermalization, and impact of temperature in the quench dynamics of two unequal Luttinger liquids

TL;DR: In this paper, the authors studied the dynamics following a quench in the tunneling between two different interacting Bose gases which are initially coupled and highlighted the quasi-thermal behaviour occurring at large times in the large distance regime, and its limit of validity.
Posted Content

One-Dimensional Quantum Systems - From Few to Many Particles

TL;DR: In this article, the authors present analytical models and numerical methods both for the few-and many-body systems, as well as the three, four, and many body quantum systems, and establish a solid knowledge about how and where the particles are trapped in harmonic oscillator potentials.
Posted Content

Lack of thermalization in (1+1)-d QCD at large $N_c$

TL;DR: In this article, the authors return to the 't Hooft model, the large-Nc limit of (1+1)-d quantum chromodynamics, and find a class of initial states that lead to aviolation of the eigenstate thermalization hypothesis, i.e. the systemnever thermalizes.
DissertationDOI

Quantum Thermalization and Localization in a Trapped Ion Quantum Simulator

Jacob Smith
TL;DR: Smith et al. as discussed by the authors experimentally generated MBL states by applying an Ising Hamiltonian with long-range interactions and programmably random disorder to ten spins initialized far from equilibrium with respect to the Hamiltonian.
References
More filters
Journal ArticleDOI

Many-Body Physics with Ultracold Gases

TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Journal ArticleDOI

Thermalization and its mechanism for generic isolated quantum systems

TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Journal ArticleDOI

Colloquium: Nonequilibrium dynamics of closed interacting quantum systems

TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Journal ArticleDOI

Exact analysis of an interacting bose gas. i. the general solution and the ground state

TL;DR: In this paper, the ground-state energy as a function of γ was derived for all γ, except γ = 0, and it was shown that Bogoliubov's perturbation theory is valid when γ is small.
Journal ArticleDOI

From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics

TL;DR: The eigenstate thermalization hypothesis (ETH) as discussed by the authors is a natural extension of quantum chaos and random matrix theory (RMT) that allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath.