scispace - formally typeset
Open AccessJournal Article

A quantum Newton's cradle

Reads0
Chats0
TLDR
In this paper, the authors show that a homogeneous 1D Bose gas with point-like collisional interactions is integrable, and that it is possible to construct a system with many degrees of freedom that does not reach thermal equilibrium even after thousands of collisions.
Abstract
It is a fundamental assumption of statistical mechanics that a closed system with many degrees of freedom ergodically samples all equal energy points in phase space. To understand the limits of this assumption, it is important to find and study systems that are not ergodic, and thus do not reach thermal equilibrium. A few complex systems have been proposed that are expected not to thermalize because their dynamics are integrable. Some nearly integrable systems of many particles have been studied numerically, and shown not to ergodically sample phase space. However, there has been no experimental demonstration of such a system with many degrees of freedom that does not approach thermal equilibrium. Here we report the preparation of out-of-equilibrium arrays of trapped one-dimensional (1D) Bose gases, each containing from 40 to 250 87Rb atoms, which do not noticeably equilibrate even after thousands of collisions. Our results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like collisional interactions is integrable. Until now, however, the time evolution of out-of-equilibrium 1D Bose gases has been a theoretically unsettled issue, as practical factors such as harmonic trapping and imperfectly point-like interactions may compromise integrability. The absence of damping in 1D Bose gases may lead to potential applications in force sensing and atom interferometry.

read more

Citations
More filters
Posted Content

Prethermalization of density-density correlations after an interaction quench in the Hubbard model

TL;DR: In this paper, the build-up of density-density correlations after a weak interaction quench in the Hubbard model was studied using unitary perturbation theory and it was shown that the prethermalization values of the post-quench correlations are equal to the equilibrium value of the interacting model at the same temperature.
Journal ArticleDOI

Spreading in integrable and non-integrable many-body systems

TL;DR: In this article, the authors consider a finite, closed and self-bound many-body system in which a collective degree of freedom is excited and identify subtle features which determine the onset of spreading in an integrable model and compare the result with a non-integrable case.
Posted Content

Thermal pure state path integral and emergent symmetry

TL;DR: In this article, a path integral in terms of thermal pure states and an effective action for trajectories in a thermodynamic state space was derived, where the entropy appeared with its conjugate variable.
Dissertation

Quantum quenches and the holographic duality.

Abstract: We study quantum quenches in a strongly coupled conformal field theory, using the gauge/gravity duality. In the first part of the thesis, we consider a perturbative thermal quench of a field theory in four spacetime dimensions by a relevant operator of arbitrary dimension 2 ≤ ∆ ≤ 4. This is done by numerically evolving the dual scalar field in fivedimensional asymptotically anti-de Sitter spacetime containing a large planar black hole, using a finite difference method. We holographically calculate the expectation values of the operator and of the field theory’s stress-energy, as well its thermodynamic quantities. We find universal scaling behaviours of these quantities in the limits of both fast and slow quenches. Further, in the limit of fast quenches we find universal behaviour in the excitation and equilibration time of the operator expectation value. The excitation time scales to zero with the quenching time, while its equilibration time becomes constant and independent of the quenching rate. In the second part of the thesis, we analytically derive the scaling observed during fast quenches in the first part. We work in the nonperturbative regime with a strongly coupled conformal field theory living in d spacetime dimensions, globally quenched by an operator O∆ of dimension d2 ≤ ∆ < d. By taking the limit of very fast quenches, the dual gravity theory becomes linearized, as one needs only consider the near-boundary behaviour of the dual scalar field. For a given source for the scalar field, we analytically solve for the expectation value of the quenching operator, as well as the change in the energy density. We find that these quantities exhibit the scaling observed in the first part of the thesis, generalized to higher dimensions. In the final part of the thesis, we again study quenches of a strongly coupled conformal field theory living in four spacetime dimensions, this time perturbatively quenched by a fermionic mass term. We focus on fast, global quenches of the thermal field theory by its holographic dual of a collapsing scalar field in five dimensional anti-de Sitter spacetime containing a black hole. Using an improved numerical method of Chebyshev pseudospectral methods, we evolve the profile of both the metric and scalar field. We calculate the time-evolution of the apparent and event horizons of the planar black hole, as well as the two-point function of a high-dimension operator, and the entanglement entropy of a strip on the boundary. These quantities probe thermalization of the field theory at different length scales. We find that the two-point function and entanglement entropy have longer thermalization times for wider separations, and that their thermalization times exhibit linear scalings with separation for wide surfaces. We also find that the thermalization times of the two-point function and entanglement entropy can exceed that of the operator expectation value.
Posted Content

Preparation of non-ergodic states in quantum spin chains

TL;DR: In this article, a semi-infinite spin chain with an impurity at the boundary is modeled as a stationary phase model and the dynamics of the site magnetization along the chain is investigated.
References
More filters
Journal ArticleDOI

Many-Body Physics with Ultracold Gases

TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Journal ArticleDOI

Thermalization and its mechanism for generic isolated quantum systems

TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Journal ArticleDOI

Colloquium: Nonequilibrium dynamics of closed interacting quantum systems

TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Journal ArticleDOI

Exact analysis of an interacting bose gas. i. the general solution and the ground state

TL;DR: In this paper, the ground-state energy as a function of γ was derived for all γ, except γ = 0, and it was shown that Bogoliubov's perturbation theory is valid when γ is small.
Journal ArticleDOI

From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics

TL;DR: The eigenstate thermalization hypothesis (ETH) as discussed by the authors is a natural extension of quantum chaos and random matrix theory (RMT) that allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath.