scispace - formally typeset
Open AccessJournal Article

A quantum Newton's cradle

Reads0
Chats0
TLDR
In this paper, the authors show that a homogeneous 1D Bose gas with point-like collisional interactions is integrable, and that it is possible to construct a system with many degrees of freedom that does not reach thermal equilibrium even after thousands of collisions.
Abstract
It is a fundamental assumption of statistical mechanics that a closed system with many degrees of freedom ergodically samples all equal energy points in phase space. To understand the limits of this assumption, it is important to find and study systems that are not ergodic, and thus do not reach thermal equilibrium. A few complex systems have been proposed that are expected not to thermalize because their dynamics are integrable. Some nearly integrable systems of many particles have been studied numerically, and shown not to ergodically sample phase space. However, there has been no experimental demonstration of such a system with many degrees of freedom that does not approach thermal equilibrium. Here we report the preparation of out-of-equilibrium arrays of trapped one-dimensional (1D) Bose gases, each containing from 40 to 250 87Rb atoms, which do not noticeably equilibrate even after thousands of collisions. Our results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like collisional interactions is integrable. Until now, however, the time evolution of out-of-equilibrium 1D Bose gases has been a theoretically unsettled issue, as practical factors such as harmonic trapping and imperfectly point-like interactions may compromise integrability. The absence of damping in 1D Bose gases may lead to potential applications in force sensing and atom interferometry.

read more

Citations
More filters
Journal ArticleDOI

Many-Body Physics with Ultracold Gases

TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Journal ArticleDOI

Thermalization and its mechanism for generic isolated quantum systems

TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Journal ArticleDOI

Colloquium: Nonequilibrium dynamics of closed interacting quantum systems

TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Journal ArticleDOI

Observation of many-body localization of interacting fermions in a quasirandom optical lattice

TL;DR: This experiment experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave.
Journal ArticleDOI

Quantum many-body systems out of equilibrium

TL;DR: In this article, the authors provide an overview of the progress in probing dynamical equilibration and thermalization of closed quantum many-body systems driven out of equilibrium by quenches, ramps and periodic driving.
References
More filters
Journal ArticleDOI

Splitting a critical spin chain

TL;DR: In this paper, a quench protocol that conserves the entanglement spectrum of a bipartition of a quantum system was studied and it was shown that this conservation plays a fundamental role in both the out-of-equilibrium dynamics and the subsequent equilibrium mechanism.
Journal ArticleDOI

Entanglement entropy of a three-spin-interacting spin chain with a time-reversal-breaking impurity at one boundary.

TL;DR: It has been shown that for all the phase boundaries, contrary to the equilibrium case, the saturation value of the EE increases logarithmically with the strength of impurity in a certain regime of λ_{d} and finally, for higher values of κ, it increases very slowly dictated by an exponential damping factor, suggesting that the impurity-induced behavior of EE might bear some deep underlying connection to thermalization.
Journal ArticleDOI

Two simple systems with cold atoms: quantum chaos tests and non-equilibrium dynamics

TL;DR: In this paper, the authors identify two atomic systems lying in the interface: two interacting atoms in a harmonic multimode waveguide and an interacting two-component Bose-Bose mixture in a double well potential.
Journal ArticleDOI

Quantum corrections to the classical field approximation for one-dimensional quantum many-body systems in equilibrium

TL;DR: In this paper, a semiclassical treatment of one-dimensional many-body quantum systems in equilibrium is presented, where quantum corrections to the classical field approximation are systematically included by a renormalization of classical field parameters.
Journal ArticleDOI

Reflection of a Lieb-Liniger wave packet from the hard-wall potential

TL;DR: In this paper, a time-dependent wave function, which describes quantum dynamics of a Lieb-Liniger wave packet comprised of N particles, can be found by solving an $N$-dimensional Fourier transform; this follows from the symmetry properties of the many-body eigenstates in the presence of the hard wall potential.