scispace - formally typeset
Open AccessJournal Article

A quantum Newton's cradle

Reads0
Chats0
TLDR
In this paper, the authors show that a homogeneous 1D Bose gas with point-like collisional interactions is integrable, and that it is possible to construct a system with many degrees of freedom that does not reach thermal equilibrium even after thousands of collisions.
Abstract
It is a fundamental assumption of statistical mechanics that a closed system with many degrees of freedom ergodically samples all equal energy points in phase space. To understand the limits of this assumption, it is important to find and study systems that are not ergodic, and thus do not reach thermal equilibrium. A few complex systems have been proposed that are expected not to thermalize because their dynamics are integrable. Some nearly integrable systems of many particles have been studied numerically, and shown not to ergodically sample phase space. However, there has been no experimental demonstration of such a system with many degrees of freedom that does not approach thermal equilibrium. Here we report the preparation of out-of-equilibrium arrays of trapped one-dimensional (1D) Bose gases, each containing from 40 to 250 87Rb atoms, which do not noticeably equilibrate even after thousands of collisions. Our results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like collisional interactions is integrable. Until now, however, the time evolution of out-of-equilibrium 1D Bose gases has been a theoretically unsettled issue, as practical factors such as harmonic trapping and imperfectly point-like interactions may compromise integrability. The absence of damping in 1D Bose gases may lead to potential applications in force sensing and atom interferometry.

read more

Citations
More filters
Posted Content

A Quantum Damper

TL;DR: In this paper, a model of quantum damper composed of a quantum harmonic oscillator (HO) weakly interacting with a bounded quantum chaos system is proposed, where the mechanical work applied to the HO is stationary converted into the internal energy characterized by an effective temperature in a sufficiently long time-scale.
Journal ArticleDOI

How to calculate quantum quench distributions with a weighted Wang–Landau Monte Carlo

TL;DR: In this article, an extension of the Wang-Landau Monte Carlo method was proposed to estimate the probability distributions of observables after a quantum quench for large systems, whenever the relevant matrix elements are calculable, but the full exponential complexity of the Hilbert space would make an exhaustive enumeration impossible beyond very limited sizes.
Posted Content

Quantum quenches and thermalization on scale-free graphs

TL;DR: In this article, it was shown that after a quantum quench of the parameter controlling the number of particles in a Fermi-Hubbard model on scale free graphs, the distribution of energy modes follows a power law dependent on the quenched parameter and the connectivity of the graph.
Journal ArticleDOI

Optimization of phonon dynamics protocols in ion traps

TL;DR: In this article, the authors developed a theory to address the non-equilibrium dynamics of phonons in a one-dimensional finite-size trapped ion system for non-linear ramp and periodic protocols.
Posted Content

Thermodynamics of Maximum Transition Entropy for Quantum Assemblies

TL;DR: In this paper, a general unifying theoretical framework for quantum non-equilibrium systems is presented based on a re-statement of the dynamical problem as one of inferring the distribution of collision events that move a system toward thermal equilibrium from an arbitrary starting distribution.
References
More filters
Journal ArticleDOI

Many-Body Physics with Ultracold Gases

TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Journal ArticleDOI

Thermalization and its mechanism for generic isolated quantum systems

TL;DR: It is demonstrated that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription, and it is shown that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki.
Journal ArticleDOI

Colloquium: Nonequilibrium dynamics of closed interacting quantum systems

TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Journal ArticleDOI

Exact analysis of an interacting bose gas. i. the general solution and the ground state

TL;DR: In this paper, the ground-state energy as a function of γ was derived for all γ, except γ = 0, and it was shown that Bogoliubov's perturbation theory is valid when γ is small.
Journal ArticleDOI

From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics

TL;DR: The eigenstate thermalization hypothesis (ETH) as discussed by the authors is a natural extension of quantum chaos and random matrix theory (RMT) that allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath.